

DECLARATION OF PERFORMANCE

DoP: 0160

for fischer Injection system T-BOND PRO.1 and FIS C700 HP PRO.1: (Bonded anchor for use in concrete) - EN

- 1. Unique identification code of the product-type: DoP: 0160
- 2. Intended use/es: Post-installed fastening in cracked or uncracked concrete, see appendix, especially Annexes B 1 to B 9
- 3. Manufacturer: fischerwerke GmbH & Co. KG, Klaus-Fischer-Straße 1, 72178 Waldachtal, Germany
- 4. Authorised representative: --
- 5. System/s of AVCP: 1
- 6. European Assessment Document: ETAG 001; 2013-04
 - European Technical Assessment: ETA-17/0435; 2017-10-06
 - Technical Assessment Body: DIBt
 - Notified body/ies: 1343 MPA Darmstadt
- 7. Declared performance/s:

Mechanical resistance and stability (BWR 1), Safety in use (BWR 4)

Characteristic values for static and quasi-static action, Displacements: See appendix, especially Annexes C 1 to C 6

Safety in case of fire (BWR 2)

- Reaction to fire: Anchorages satisfy requirements for Class A 1
- Resistance to fire: NPD

8. Appropriate Technical Documentation and/or Specific Technical Documentation: ---

The performance of the product identified above is in conformity with the set of declared performance/s. This declaration of performance is issued, in accordance with Regulation (EU) No 305/2011, under the sole responsibility of the manufacturer identified above.

Signed for and on behalf of the manufacturer by:

Andreas Bucher, Dipl.-Ing.

1.V. A. Oun

i.V. W. Kgelal

Wolfgang Hengesbach, Dipl.-Ing., Dipl.-Wirtsch.-Ing.

Tumlingen, 2017-10-12

- This DoP has been prepared in different languages. In case there is a dispute on the interpretation the english version shall always prevail.
- The Appendix includes voluntary and complementary information in English language exceeding the (language-neutrally specified) legal requirements.

Specific Part

1 Technical description of the product

The fischer injection system T-BOND-PRO.1 or FIS C700 HP PRO.1 is a bonded anchor consisting of a cartridge with injection mortar fischer T-BOND-PRO.1 or FIS C700 HP PRO.1 and a steel element.

The steel element is placed into a drilled hole filled with injection mortar and is anchored via the bond between metal part, injection mortar and concrete.

The product description is given in Annex A.

2 Specification of the intended use in accordance with the applicable European Assessment Document

The performances given in Section 3 are only valid if the anchor is used in compliance with the specifications and conditions given in Annex B.

The verifications and assessment methods on which this European Technical Assessment is based lead to the assumption of a working life of the anchor of at least 50 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

3 Performance of the product and references to the methods used for its assessment

3.1 Mechanical resistance and stability (BWR 1)

Essential characteristic	Performance
Characteristic values for static and quasi-static action, displacements	See Annex C 1 to C 8

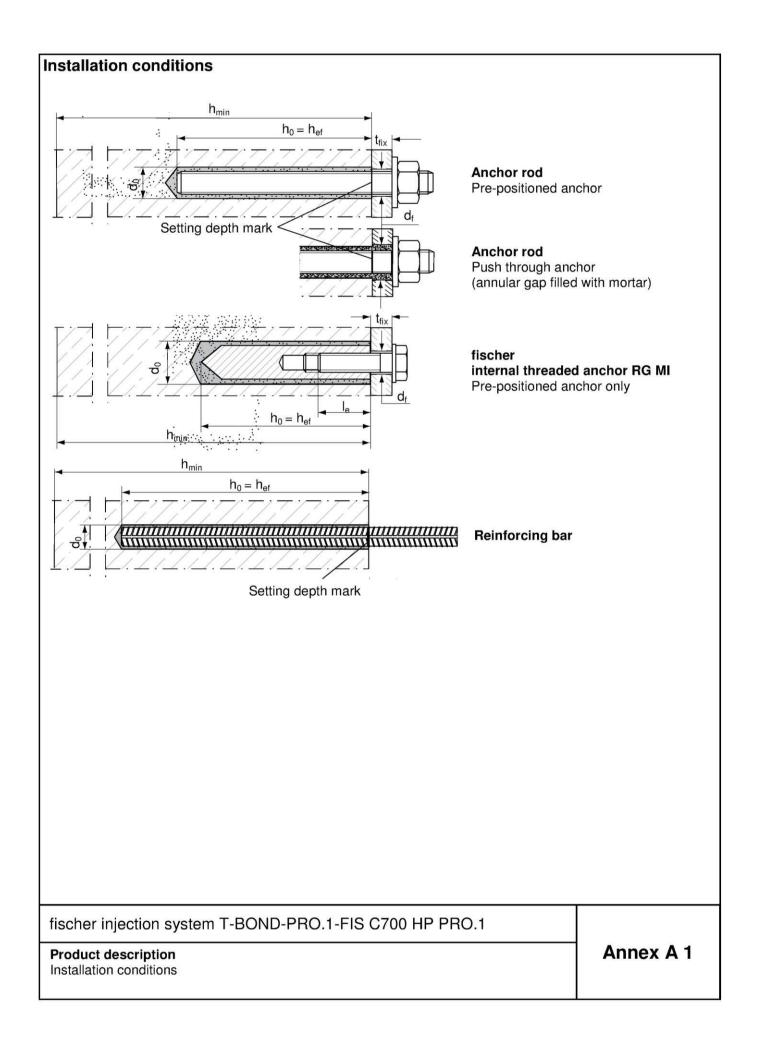
3.2 Safety in case of fire (BWR 2)

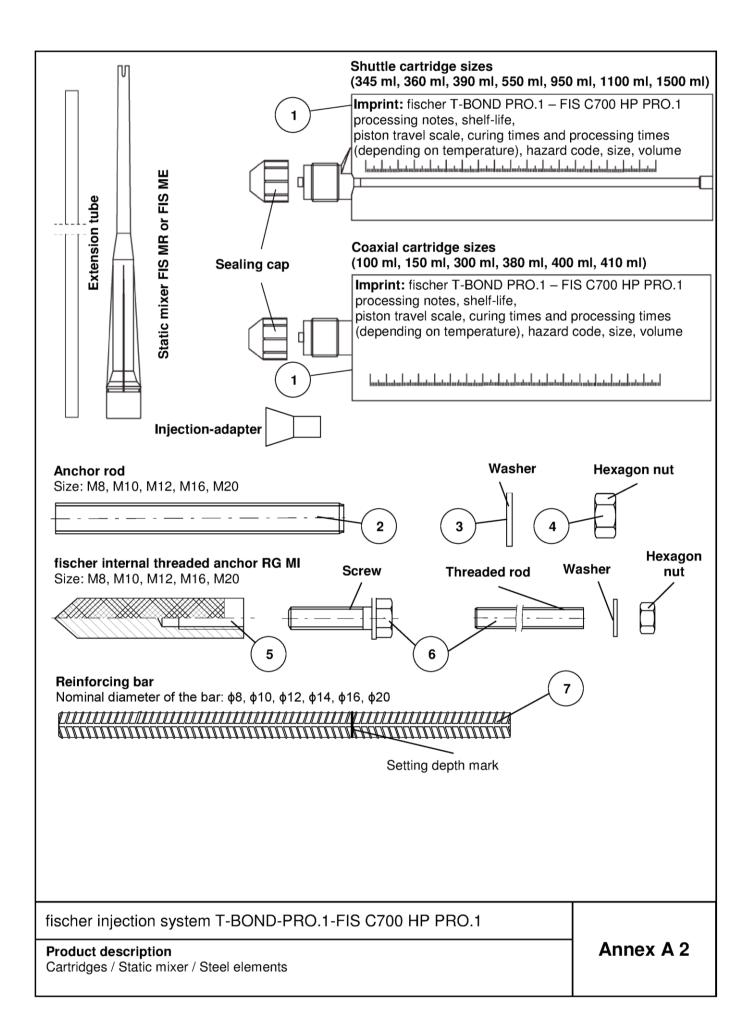
Essential characteristic	Performance
Reaction to fire	Anchorages satisfy requirements for Class A1
Resistance to fire	No performance assessed

3.3 Hygiene, health and the environment (BWR 3)

Regarding dangerous substances there may be requirements (e.g. transposed European legislation and national laws, regulations and administrative provisions) applicable to the products falling within the scope of this European Technical Assessment. In order to meet the provisions of Regulation (EU) No 305/2011, these requirements need also to be complied with, when and where they apply.

3.4 Safety in use (BWR 4)


The essential characteristics regarding Safety in use are included under the Basic Works Requirement Mechanical resistance and stability.


4 Assessment and verification of constancy of performance (AVCP) system applied, with reference to its legal base

In accordance with guideline for European technical approval ETAG 001, April 2013 used as European Assessment Document (EAD) according to Article 66 Paragraph 3 of Regulation (EU) No 305/2011 the applicable European legal act is: [96/582/EC].

The system to be applied is: 1

Appendix 3 / 22

Part	Designation		Material	
	Mortar cartridge		Mortar, hardener, filler	
	Steel grade	Steel, zinc plated	Stainless steel A4	High corrosion resistant steel C
2	Anchor rod	Property class 5.8 or 8.8; EN ISO 898-1:2013 zinc plated ≥ 5 μm, EN ISO 4042:1999 A2K or hot-dip galvanised EN ISO 10684:2004 f _{ulk} ≤ 1000 N/mm ² A ₅ > 8 %	Property class 50, 70 or 80 EN ISO 3506-1:2009 1.4401; 1.4404; 1.4578; 1.4571; 1.4439; 1.4362; 1.4062, 1.4662, 1.4462 EN 10088-1:2014 f _{uk} ≤ 1000 N/mm ² A ₅ > 8 %	Property class 50 or 80 EN ISO 3506-1:2009 or property class 70 with f_{yk} = 560 N/mm ² 1.4565; 1.4529 EN 10088-1:2014 $f_{uk} \le 1000$ N/mm ² $A_5 > 8 \%$
3	Washer ISO 7089:2000	fracture elongation zinc plated ≥ 5 μm, EN ISO 4042:1999 A2K or hot-dip galvanised EN ISO 10684:2004	fracture elongation 1.4401; 1.4404; 1.4578;1.4571; 1.4439; 1.4362 EN 10088-1:2014	fracture elongation 1.4565;1.4529 EN 10088-1:2014
4	Hexagon nut	Property class 5 or 8; EN ISO 898-2:2012 zinc plated ≥ 5 µm, ISO 4042:1999 A2K or hot-dip galvanised EN ISO 10684:2004	Property class 50, 70 or 80 EN ISO 3506-1:2009 1.4401; 1.4404; 1.4578; 1.4571; 1.4439; 1.4362 EN 10088-1:2014	Property class 50, 70 or 80 EN ISO 3506-1:2009 1.4565; 1.4529 EN 10088-1:2014
5	fischer internal threaded anchor RG MI	Property class 5.8 ISO 898-1:2013 zinc plated ≥ 5 μm, ISO 4042:1999 A2K	Property class 70 EN ISO 3506-1:2009 1.4401; 1.4404; 1.4578; 1.4571; 1.4439; 1.4362 EN 10088-1:2014	Property class 70 EN ISO 3506-1:2009 1.4565; 1.4529 EN 10088-1:2014
6	Commercial standard screw or anchor / threaded rod for fischer internal threaded anchor RG MI	Property class 5.8 or 8.8; EN ISO 898-1:2013 zinc plated \geq 5 µm, ISO 4042:1999 A2K fracture elongation A ₅ > 8 %	Property class 70 EN ISO 3506-1:2009 1.4401; 1.4404; 1.4578; 1.4571; 1.4439; 1.4362 EN 10088-1:2014 fracture elongation A ₅ > 8 %	Property class 70 EN ISO 3506-1:2009 1.4565; 1.4529 EN 10088-1:2014 fracture elongation A ₅ > 8 %
7	EN 1992-1-1:2004 and	Bars and de-coiled rods, cla f_{yk} and k according to NDP $f_{uk} = f_{tk} = k \cdot f_{yk}$	ass B or C with or NCL of EN 1992-1-1:200	4+AC:2010

Specifications Table B1: Ove			-	ries								
Anchorages subje	ect to		т-вог	ND PRO.1 – F	FIS C700 HP F	PRO.1 with .						
		Anche	or rod	internal threa	cher aded anchor à MI	Reinfor	rcing bar					
		<u></u>	······	\rightarrow								
Hammer drilling with standard drill bit	844 440000000											
Hammer drilling with hollow drill bit (Heller "Duster Expert" or Hilti "TE-CD, TE-YD")	Ī		Nominal c	Irill bit diamet	er (d₀) 12 mm	to 32 mm						
Static and quasi	uncracked concrete	all sizes	Tables:	all sizes	Tables:	all sizes	Tables:					
static load, in	cracked concrete	M10 to M20	C1, C4, C5, C8	not assessed	C2, C4, C6, C9	φ10 bis φ20	- C3, C4, C7, C10					
Use category	dry or wet concrete		all sizes									
Installation temperature				-5 °C to	o +40 °C							
In-service	Temperature range I	-40 °C to +8			perature +50 ° perature +80 °							
temperature	Temperature range II	-40 °C to +1	20 °C (max. l	long term tem	perature +72 ° perature +120	°C and						
fischer injectio	on system T-	BOND-PRO).1-FIS C70	0 HP PRO	.1		nov R 1					
Specifications (p	part 1)						Annex B 1					

Specifications of intended use (part 2)

Base materials:

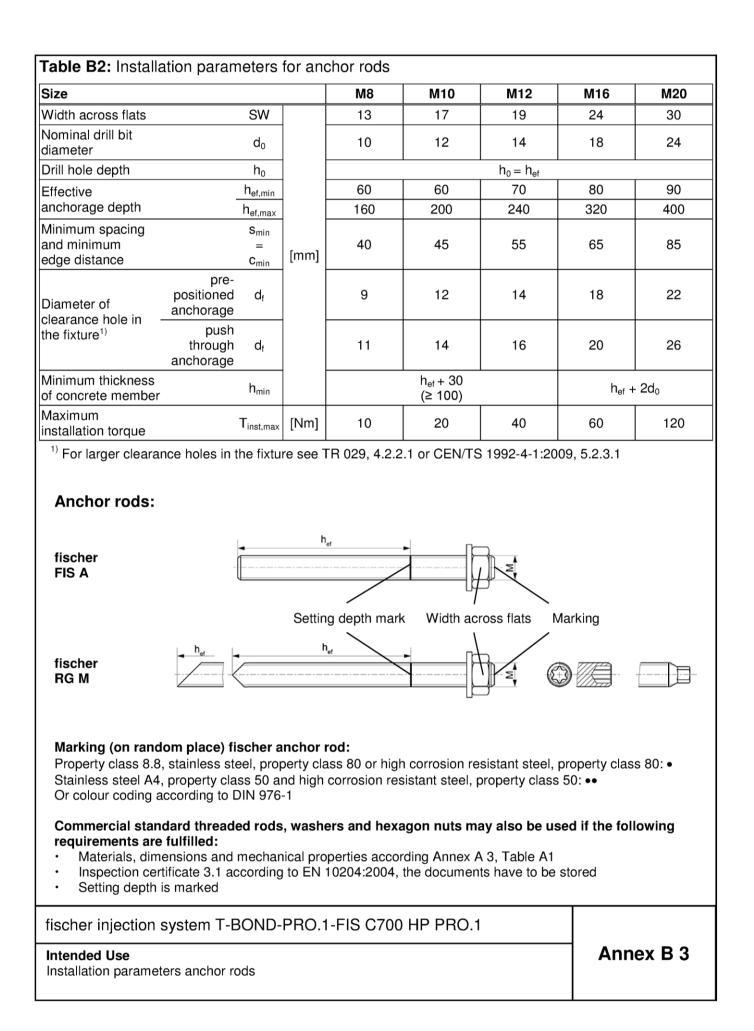
 Reinforced or unreinforced normal weight concrete Strength classes C20/25 to C50/60 according to EN 206-1:2000

Use conditions (Environmental conditions):

- Structures subject to dry internal conditions
 (zinc coated steel, stainless steel or high corrosion resistant steel)
- Structures subject to external atmospheric exposure (including industrial and marine environment) and to permanently damp internal condition, if no particular aggressive conditions exist (stainless steel or high corrosion resistant steel)
- Structures subject to external atmospheric exposure, to permanently damp internal conditions or in other particular aggressive conditions (high corrosion resistant steel)

Note: Particular aggressive conditions are e. g. permanent, alternating immersion in seawater or the splash zone of seawater, chloride atmosphere of indoor swimming pools or atmosphere with extreme chemical pollution (e. g. in desulphurization plants or road tunnels where de-icing materials are used)

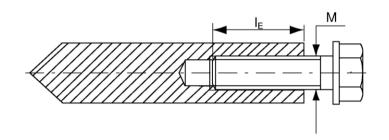
Design:


- Anchorages have to be designed by a responsible engineer with experience of concrete anchor design
- Verifiable calculation notes and drawings are to be prepared taking account of the loads to be anchored. The position of the anchor is indicated on the design drawings (e. g. position of the anchor relative to reinforcement or to supports, etc.)
- Anchorages under static or quasi-static actions are designed in accordance with EOTA Technical Report TR 029 "Design of bonded anchors" Edition September 2010 or CEN/TS 1992-4:2009

Installation:

- Anchor installation is to be carried out by appropriately qualified personnel and under the supervision of the person responsible for technical matters of the site
- · In case of aborted hole: The hole shall be filled with mortar
- Anchorage depth should be marked and adhered to on installation
- Overhead installation is allowed

fischer injection system T-BOND-PRO.1-FIS C700 HP PRO.1

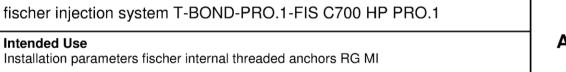

Intended Use Specifications (part 2)



Size			M8	M10	M12	M16	M20				
Diameter of anchor	d _H		12	16	18	22	28				
Nominal drill bit diameter	d _o		14	18	20	24	32				
Drill hole depth	h _o		$h_0 = h_{ef}$								
Effective anchorage depth $(h_{ef} = L_H)$	h _{ef}		90	90	125	160	200				
Minimum spacing and minimum edge distance	S _{min} = C _{min}	[mm]	55	65	75	95	125				
Diameter of clearance hole in the fixture ¹⁾	d _f		9	12	14	18	22				
Minimum thickness of concrete member	h _{min}		120	125	165	205	260				
Maximum screw-in depth	I _{E,max}		18	23	26	35	45				
Minimum screw-in depth	I _{E,min}		8	10	12	16	20				
Maximum installation torque	T _{inst,max}	[Nm]	10	20	40	80	120				

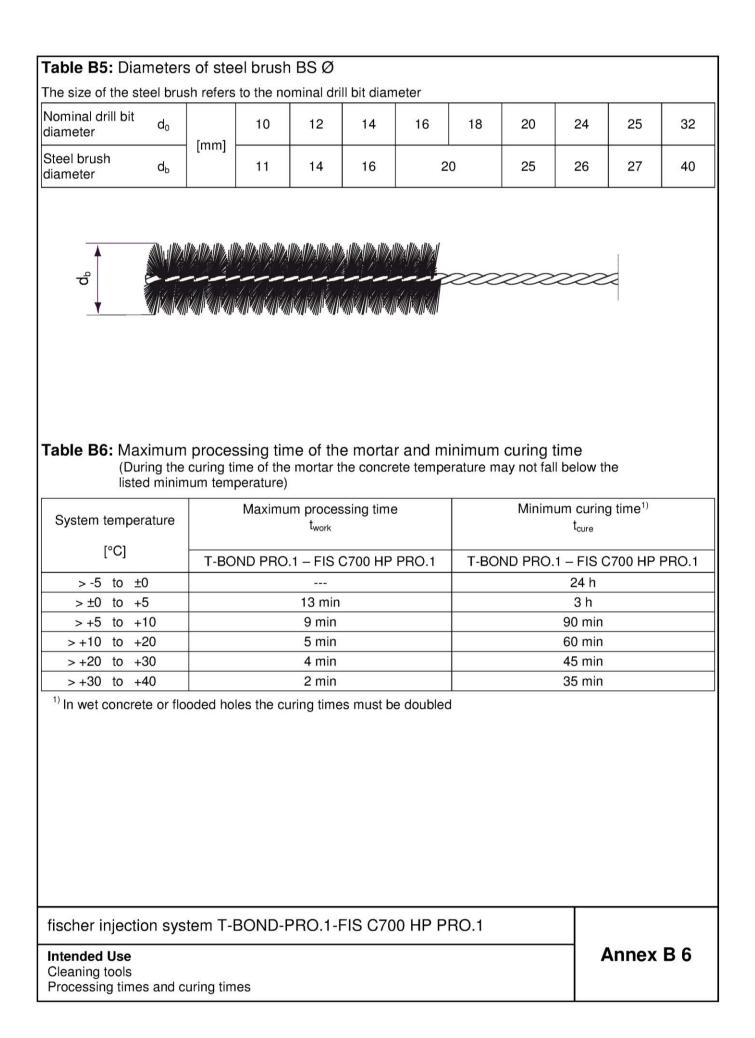
¹⁾ For larger clearance holes in the fixture see TR 029, 4.2.2.1 or CEN/TS 1992-4-1:2009, 5.2.3.1

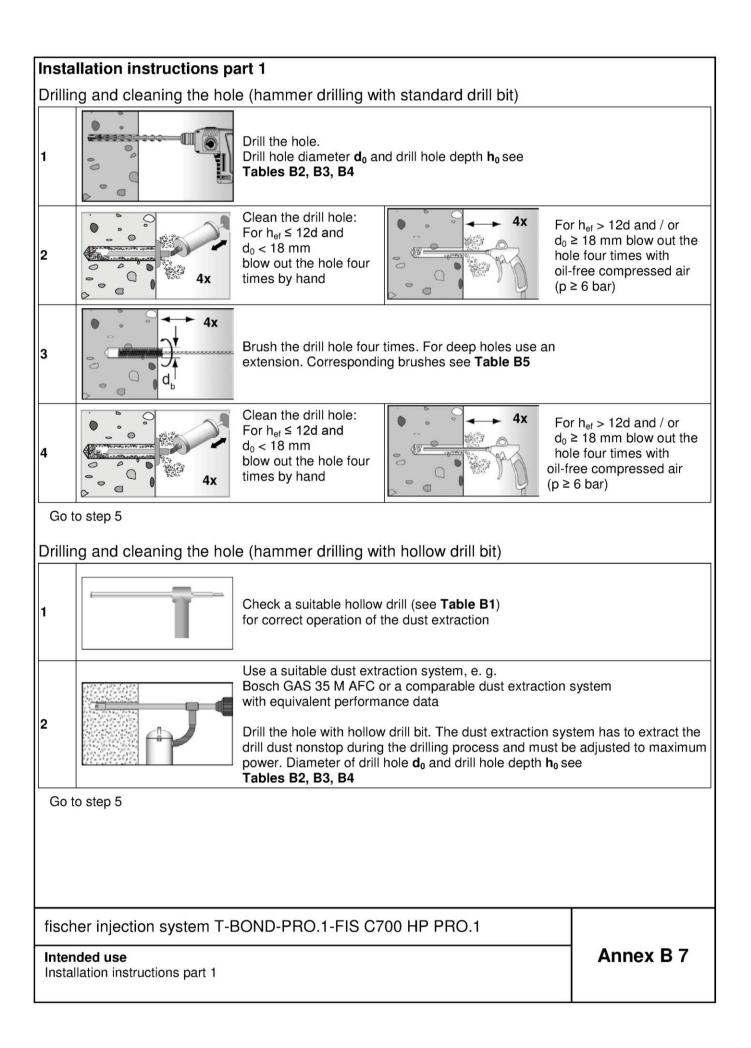
fischer internal threaded anchor RG MI

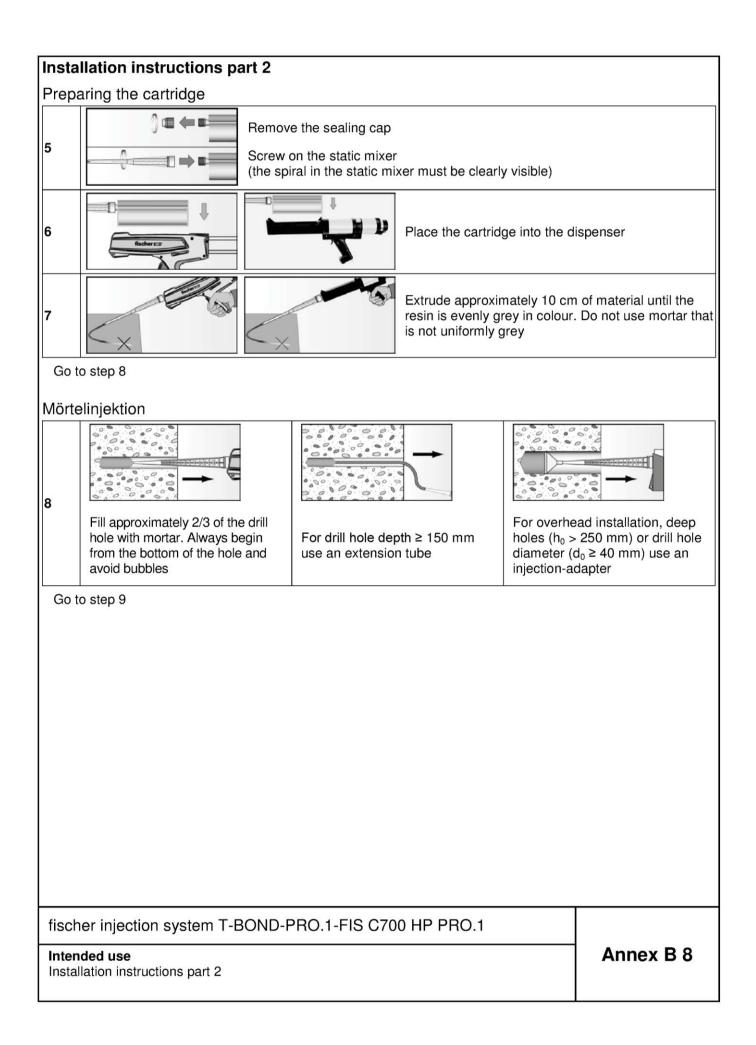


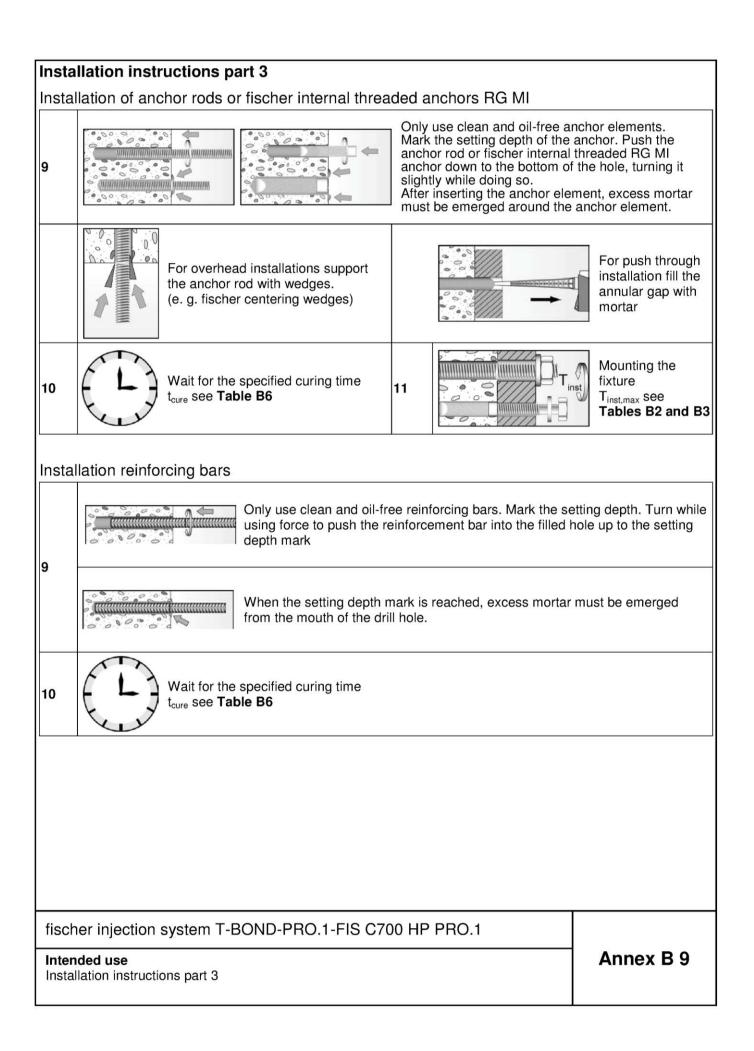
Marking: Anchor size e. g.: M10

Stainless steel additional A4 e. g.: M10 A4


High corrosion resistant steel additional **C** e. g.: **M10 C**


Retaining bolt or threaded rods (including nut and washer) must comply with the appropriate material and strength class of Annex A 3, Table A1




Annex B 4

Nominal diameter of the bar		ф	81	8 ¹⁾		1)	12	2 ¹⁾	14	16	20
Nominal drill bit diameter	d ₀		10	12	12	14	14	16	18	20	25
Drill hole depth	ho		I					h ₀ =	h _{ef}		
Effective	h _{ef,min}		60	0	6	0	70		75	80	90
anchorage depth	h _{ef,max}	[mm]	160		20	0	24	40	280	320	400
nimum spacing and s _{min} =			40	0	4	5	55		60	65	85
Minimum thickness	num thickness h						h	 1 _{ef} + 2d ₀			
¹⁾ Both drill bit diameters can Reinforcing bar											
	h,			20	88	8		K	Setting de	anth mark	ZA
The minimum value of relationships and the minimum v	elated rik	o area fr	a.min m	ust fu	ılfil the	requ	ireme	nts of			
EN 1992-1-1:2004+AC:			1 ,1111								
 The rib height must be v (φ = Nominal diameter of 	vithin the	r ange: r , h _{rib} =	0,05 rib he	· φ ≤ Ι eight)	n _{rib} ≤ 0	,07	φ				
fischer injection system	Γ-BONI	D-PRC).1-Fl	IS C	700 F	IP P	RO.1				

Stanless steel Property 50 70 9 15 21 39 Steel zinc plated of a and the property of A and RG M made of high corrosion-resistant steel C 110 10 10 10 10 10 10 10 10 10 10 10 1	Size					M8	M10	M12	M16	M20			
Steel zinc plated Property 8.8 70 80 19 29 47 68 126 70 70 80 19 29 43 79 10 26 41 59 110 10 26 41 59 110 10 26 41 59 110 10 26 41 59 110 10 26 41 59 110 10 26 41 59 110 10 26 44 and resistant steel C Property 50 1 50	Bearing ca	apacity unde	r tensile loa	id, ste	el fail	ure	_			-			
Steel zinc plated reg by stainless steel reg by stainless steel reg by staind steel reg by stainless steel reg by stainless st	ළි _ඉ Ste	el zinc plated								123			
Steel zinc plated registrant steel C Property Class 5.8 8.8 70 70 80 9 15 1,50 2.86 Stainless steel A4 and registrant steel C Property Class 5.8 8.8 70 80 9 15 1,50 ² 1,87 Stainless steel A4 and registrant steel C Property Stainless steel Property Class 5.8 8.8 70 9 15 21 34 39 Stainless steel To resistant steel C Property Class 5.8 8.8 70 9 15 21 34 39 Stainless steel To resistant steel C Property Class 5.8 8.8 70 9 15 21 34 39 Stainless steel To resistant steel C Property Class 5.8 8.8 70 19 70 13 20 30 55 Steel zinc plated To resistant steel C Property Class 50 70 19 70 37 65 66 Steel zinc plated High corrosion resistant steel C Property Class 50 70 19 70 30 60 105 266 Stainless steel Property Stainless steel Property Class 50 70 1,25 1,25 166 Stainless steel Property Stainless steel Property Class 50 70 1,25 ² /1,56 1,25 1,33	Parin N _{Rk} ,									196			
Steel zinc plated reg by stainless steel reg by stainless steel reg by staind steel reg by stainless steel reg by stainless st	tic Sta	inless steel	Property	50	[kN]	19	29	43	79	123			
Steel zinc plated Property 50 10 30 47 68 126 Partial safety factors ¹	A4 and arac	and h corrosion	01233	70		26	41	59	110	172			
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	ට් ^හ resi	istant steel C		80		30	47	68	126	196			
Steel zinc plated by error of thigh corrosion resistant steel C Property class 8.8 50 70 80	Partial saf	ety factors ¹⁾					1	1					
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Ste	el zinc plated						1,50					
resistant steel C 80 1,60 Bearing capacity under shear load, steel failure without lever arm $\begin{array}{c c c c c c c c } \hline \\ \hline $	afety ^{As,N}							1,50					
resistant steel C 80 1,60 Bearing capacity under shear load, steel failure 9 15 21 39 Without lever arm 9 15 21 39 39 Stainless steel C Property Class $\frac{5.8}{50}$ (RN) 9 15 21 39 34 63 Outling of the property Core of the High corrosion C Property Class $\frac{5.8}{50}$ (RN) 9 15 21 39 34 63 30 Outling factor acc. to CEN/TS (992-4-5:2009 Section 6.3.2.1 k2 [-] 1.0 10 37 65 166 Outling factor acc. to CEN/TS (992-4-5:2009 Section 6.3.2.1 k2 [-] 1.9 37 65 166 Outling factor acc. to CEN/TS (992-4-5:2009 Section 6.3.2.1 k2 [-] 1.9 37 65 166 Steel zinc plated (High corrosion fresistant steel C Property (lass 50 [Nm] 19 37 65 166 Steel zinc plated (High corrosion fresistant steel C Property (lass 50 [-] 1.25 1.25 1.25 At and High cororosion resistant steel C 7	Sta	Stainless steel Property		50	[-]			2,86					
resistant steel C 80 1,60 Bearing capacity under shear load, steel failure 9 15 21 39 Without lever arm 9 15 21 39 39 Stainless steel Core of the tigh corrosion Core of the tigh corrosion resistant steel C Property class $\frac{5.8}{50}$ (KN) $\frac{70}{80}$ 9 15 21 39 Ductility factor acc. to CEN/TS (992-4-5:2009 Section 6.3.2.1 k_2 (Class [-] 1.0 1.0 Vith lever arm 5.8 (RN) (992-4-5:2009 Section 6.3.2.1 k_2 (Class [-] 1.0 1.0 Vith lever arm 5.8 (RN) (Property Class 5.8 (RN) (Property Class 1.9 37 65 166 Steel zinc plated (High corrosion (Fresistant steel C Property (Class 5.8 (RN) (RN) (RN) (RN) 1.9 37 65 166 Property (Free of A4 and High corrosion (Fresistant steel C Property (Class 5.8 (RN) (RN) (RN) (RN) 1.25 1.25 1.25 Steel zinc plated (Free of A4 and High corrosion (R) 9 1.25 1.25 1.25 1.33 1.33 1.33 Property (Free of A4 and High corrosion (R) 9 1.25 1.33	bH fact		01233	70		1,50 ²⁾ / 1,87							
$\frac{15}{2} = \frac{3}{2} \frac{1}{2} \frac$	resi			80				1,60					
$ \frac{5}{100} 5$	Bearing ca	apacity unde	r shear load	d, stee	l failu	re							
$\frac{3}{2} = \frac{3}{2} \frac{5}{2} \frac{1}{2} $	without le	ver arm											
Steel zinc plated Steel zinc plated For perty class Steel zinc plated For perty class Steel zinc plated Steel	ව° ∞ Ste	el zinc plated								61			
Ductility factor acc. to CEN/TS 1992-4-5:2009 Section 6.3.2.1 k2 [-] 10 10 10 10 10 with lever arm Steel zinc plated Froperty 5.8 19 37 65 166 166 to be the construction of the cons	earii V _{Rk.}									98			
Ductility factor acc. to CEN/TS (1992-4-5:2009 Section 6.3.2.1 k2 [-] 10 With lever arm Steel zinc plated Property class 5.8 50 199 19 37 65 166 Steel zinc plated Propertyclass 507080 [Nm] 19 37 65 166 A4 and High corrosion resistant steel C Property class 50 70 80 [Nm] 26 52 92 232 Steel zinc plated Property class 50 70 80 [Nm] 1926 3060 105 266 Partial safety factors ¹⁾ 507080 $1,251,25$ $1,251,25$ $1,25$ Steel zinc plated Stainless steel A4 and High corrosion resistant steel C 70 80 $1,251,25^2/1,56 1,25^2/1,56 Image: a start steel C 801,33 1,25^2/1,56 1,33 1,25^2/1,56 Image: a start steel C 801,33$ $1,33$ $1,33$ $1,33$	Sta			50	[kN]	9	15	21	39	61			
$\frac{100}{100} = \frac{100}{100} = \frac{1000}{100} = \frac{100}{100} =$	ନ୍ଥ ନୁ A4 an ଅନୁ ନୁ High d		olabo	70		13	20	30	55	86			
1992-4-5:2009 Section 6.3.2.1 K_2 [-] 1,0 with lever arm Steel zinc plated Property 5.8 19 37 65 166 Steel zinc plated Property 50 70 19 37 65 166 Steel zinc plated Property 50 70 26 52 92 232 A4 and High corrosion Property 50 70 26 52 92 232 Partial safety factors ¹ 70 80 1.25 70 1.25 Steel zinc plated Property 50 70 8.8 1.25 72 2.38 Steel zinc plated Property 50 70 8.8 1.25 1.25^{-1} Stainless steel Property 60 70 80 1.25^{-1} 1.25^{-1} Image: Stain less steel 8.8 8.8 1.25^{-1} 1.25^{-1} 1.33^{-1} Image: Stain less steel 80 70 80 1.33^{-1} 1.33^{-1}	ວິດ resi	resistant steel C	80		15	23	34	63	98				
$\frac{5}{20} = \frac{5}{2} \frac$				k ₂	[-]			1,0					
30 60 105 266 166	with lever	arm											
$\frac{100}{100} = \frac{100}{100} = $	Ste	el zinc plated								324			
Single corrosion resistant steel C803060105266Partial safety factors1)Appendix Steel zinc plated resistant steel CSteel zinc plated Property class 5.8 50 70 80 1,25Image: Property of the pr										519			
Stringh corrosion resistant steel C803060105266Partial safety factors ¹⁾ Appendix resistant steel C 5.8 Stainless steel A4 and High corrosion resistant steel C 5.8 70 80 $1,25$ $1,25$ Image: Property resistant steel C 5.8 70 80 $1,25$ $1,25^2) / 1,56$ Image: Property resistant steel C 5.8 70 80 $1,25^2) / 1,56$ Image: Property resistant steel C 70 80 $1,25^2) / 1,56$ Image: Property resistant steel C 70 80 $1,33$		inless steel		50	[Nm]	19	37	65	166	324			
Eresistant steel C803060105266Partial safety factors1)ApproxSteel zinc plated Stainless steel A4 and High corrosion resistant steel CProperty class 5.8 50 70 1,25Property Class 50 70 -1 $1,25^2$ $1,25^2$ / 1,56 $1,25^2$ / 1,56 $1,33$ $1,33$	ن کے گے کے Hig	h corrosion	olucio	70		26	52	92	232	454			
A property of the second se				80		30	60	105	266	519			
At and Property 8.8 Stainless steel Property 50 A4 and nd High corrosion 70 80 1,25° 1,25° 1,25° 1,25° 1,25° 1,25° 1,25° 1,25° 1,33 10 nabsence of other national regulations 2) Only for fischer FIS A and RG M made of high corrosion-resistant steel C	Partial saf	ety factors ¹⁾											
in absence of other national regulations 1,25 1) In absence of other national regulations 1,33	 Ste 	el zinc plated						-					
resistant steel C 80 1,33	afety ^{Ms,V}												
resistant steel C 80 1,33	S Sta			50	[-]			2,38					
resistant steel C 80 1,33	bH fact		Class	70				1,25 ²⁾ / 1,56					
²⁾ Only for fischer FIS A and RG M made of high corrosion-resistant steel C	resi						1,33						
	¹⁾ In abse ²⁾ Only fo	nce of other n r fischer FIS A	ational regu and RG M	lations made	of hig	n corrosion-r	esistant stee	IC					
fischer injection system T-BOND-PRO.1-FIS C700 HP PRO.1	fischer in	njection sys	tem T-BO	ND-P	RO.1	-FIS C700) HP PRO.	1					

fisch	er in	ternal th	reade	d an	chors RG	MI under te	ensile / shea	ar load				
Size					M8	M10	M12	M16	M20			
Bearing capacity u	Inder	r tensile loa	ad, ste	el fail	ure							
		Property	5.8		19	29	43	79	123			
Characteristic bearing capacity		class	8.8	[kN]	29	47	68	108	179			
with screw	N _{Rk,s}	Property	A4		26	41	59	110	172			
		class 70	С		26	41	59	110	172			
Partial safety facto	ors ¹⁾											
		Property	5.8				1,50					
Partial safety		class	8.8		1,50							
factor ^γ		Property	A4	[-]	1,87							
		class 70	С		1,87							
Bearing capacity u	Inder	r shear loa	d, stee	l failu	re							
without lever arm												
		Property	5.8		9,2	14,5	21,1	39,2	62,0			
Characteristic bearing capacity V			8.8	[kN]	14,6	23,2	33,7	54,0	90,0			
with screw		Property	A4		12,8	20,3	29,5	54,8	86,0			
		class 70	С		12,8	20,3	29,5	54,8	86,0			
Ductility factor acc. 1992-4-5:2009 Sect	to CE tion 6	EN/TS 5.3.2.1	k ₂	[-]	1,0							
with lever arm												
Observation		Property	5.8		20	39	68	173	337			
Characteristic bending moment M	1 ⁰	class	8.8	[Nm]	30	60	105	266	519			
with screw		Property	A4	[[1411]]	26	52	92	232	454			
		class 70	С		26	52	92	232	454			
Partial safety facto	ors ¹⁾											
		Property	5.8				1,25					
Partial safety		class	8.8	_{[-1}			1,25					
factor		Property	A4	[-]			1,56					
		class 70	С				1,56					

fischer injection system T-BOND-PRO.1-FIS C700 HP PRO.1

Characteristic steel bearing capacity of fischer internal threaded anchors RG MI

Table C3: Characteristic valunder tensile / sh		ne st	teel bea	ring capa	acity of r	einforcin	ng bars	
Nominal diameter of the bar		φ	8	10	12	14	16	20
Bearing capacity under tensile	load, steel	l failt	ure	•	-		-	•
Characteristic bearing capacity	N _{Rk,s} [[kN]			A_{s} ·	f _{uk} ¹⁾		
Bearing capacity under shear l	oad, steel t	failui	re					
without lever arm								
Characteristic bearing capacity	V _{Rk,s} [[kN]			0,5 · A	$h_{s} \cdot f_{uk}^{(1)}$		
Ductility factor acc. to CEN/TS 1992-4-5:2009 Section 6.3.2.1	k ₂	[-]			0	,8		
with lever arm								
Characteristic bending moment ¹⁾ f _{uk} or f _{yk} respectively must be t		Nm]				$V_{el} \cdot f_{uk}^{(1)}$		
fischer injection system T-E	BOND-PR	RO.1	-FIS C7	00 HP PF	RO.1			
Performances Characteristic steel bearing capa	acity of rein	forcir	ng bars				Anne	x C 3

Size							All s	sizes		
Bearing capacit	y under tensile loa	ad								
Factors acc. to	CEN/TS 1992-4:20	09 Se	ction 6	.2.2.3						
Uncracked concr	ete	k_{ucr}	[-]				10),1		
Cracked concrete	-	k_{cr}					7	,2		
Factors for the	compressive strer	igth o	f conc	rete > C20/2	25					
_	C25/30						,	05		
Increasing -	C30/37							10		
factor –	C35/45	Ψ_{c}	[-]					15		
for τ _{Rk}	C40/50	-0						19		
_	C45/55						,	22		
0	C50/60						1,	26		
Splitting failure								h		
Edage distance	$h / h_{ef} \ge 2,0$							h _{ef}		
Eage distance	$2,0 > h / h_{ef} > 1,3$	$\mathbf{c}_{cr,sp}$	[mm]					- 1,8 h		
Orașina	h / h _{ef} ≤ 1,3	S _{cr,sp}						3 h _{ef}		
Spacing	cilura ana ta CEN	000 4 4	2 c _{cr,sp}							
	anure acc. to CEN		992-4-:	5:2009 Sect	1011 0.2.3.	2	1 5	h		
Edge distance Spacing		C _{cr,N}	[mm]	1,5 h _{ef} 2 c _{cr.N}						
	y under shear loa	S _{cr,N}					20	cr,N		
Installation safe	-	u								
		2/-								
All installation co	nditions	γ ₂ =	[-]				1	,0		
		γinst						-		
Concrete pry-ou	ıt failure									
Factor k acc. to T										
Section 5.2.3.3 r		$k_{(3)}$	[-]				2	,0		
CEN/TS 1992-4- Section 6.3.3	5.2009									
Concrete edge f	ailure									
The value of h_{ef} ([malie (l			
under shear load			[mm]				min (h	1 _{ef} ; 8d)		
Calculation dian	neters									
Size				M8	M10		М	12	M16	M20
Anchor rods		d		8	10		1	2	16	20
fischer		d _{nom}	[mm]	12	16		1	8	22	28
internal threaded		-110111								
	r of the bar		ф	8	10	L	12	14		20
Nominal diamete Reinforcing bar		d	[mm]	8	10		12	14	16	20

Performances

General design factors relating to the characteristic bearing capacity under tensile / shear load

Annex C 4

Table C5: Characteristic values in hammer drilled hold						
Size		M8	M10	M12	M16	M20
Combined pullout and concrete con	e failure					
Calculation diameter d	[mm]	8	10	12	16	20
Uncracked concrete						
Characteristic bond resistance in un	ncracked	concrete C20)/25			
Hammer-drilling with standard drill bit	or hollow d	lrill bit (dry an	d wet concret	te)		
Tem- I: 50 °C / 80 °C		11,0	11,0	11,0	10,0	9,5
perature II: 72 °C / 120 °C	[N/mm ²]	9,5	9,5	9,0	8,5	8,0
Installation safety factors		,	,	,		
Dry and wet concrete $\gamma_2 = \gamma_{ins}$	t [-]			1,2		
Cracked concrete						
Characteristic bond resistance in cr	acked co	ncrete C20/2	5			
Hammer-drilling with standard drill bit	or hollow d	Irill bit (dry an	d wet concret	te)		
Tem- I: 50 °C / 80 °C			6,0	6,0	6,0	5,5
perature range II: 72 °C / 120 °C ^τ _{Rk,cr}	[N/mm ²]		5,0	5,0	5,0	5,0
Installation safety factors			,			
Dry and wet concrete $\gamma_2 = \gamma_{ins}$	t [-]			1,2		
fischer injection system T-BON Performances Characteristic values for static or qua				anchor rods	Ann	ex C 5
(uncracked or cracked concrete)	o, otatio ao					

Table C6: Characteristic values of RG MI in hammer drill					hreade	ed anchor	S
Size		M8	M10	M	12	M16	M20
Combined pullout and concrete cone	e failure		<u> </u>				
Calculation diameter d	[mm]	12	16	1	8	22	28
Uncracked concrete			-				
Characteristic bond resistance in un	cracked o	concrete C	20/25				
Hammer-drilling with standard drill bit o	r hollow d	rill bit (dry a	and wet co	ncrete)			
Tem- I: 50 °C / 80 °C	2	10,5	10,0	9	,5	9,0	8,5
range II: 72 °C / 120 °C	[N/mm ²]	9,0	8,0	8	,0	7,5	7,0
Installation safety factors		0,0	0,0		,•	.,.	.,.
Dry and wet concrete $\gamma_2 = \gamma_{inst}$	[-]			1	,2		
Table C7: Characteristic values of in hammer drilled hole	es; uncr a	acked or	cracked	concret			
Nominal diameter of the bar	φ	8	10	12	14	16	20
Combined pullout and concrete cone		-					
Calculation diameter d	[mm]	8	10	12	14	16	20
Uncracked concrete			00/05				
Characteristic bond resistance in un							
Hammer-drilling with standard drill bit o	<u>r hollow d</u>						
Tem- perature I: 50 °C / 80 °C	[N/mm ²]	11,0	11,0	11,0	10,0	10,0	9,5
range II: 72 °C / 120 °C	[.,,,,,,,,]	9,5	9,5	9,0	8,5	8,5	8,0
Installation safety factor							
Dry and wet concrete $\gamma_2 = \gamma_{inst}$	[-]			1,	,2		
Cracked concrete							
Characteristic bond resistance in cra	acked cor	ncrete C20	/25				
Hammer-drilling with standard drill bit o	<u>r hollow d</u>	rill bit (dry a	and wet co	ncrete)			
Tem- I: 50 °C / 80 °C	[N]//m /m 21		3,0	5,0	5,0	5,0	4,5
perature II: 72 °C / 120 °C	[N/mm ²]		3,0	4,5	4,5	4,5	4,0
Installation safety factor							
Dry and wet concrete $\gamma_2 = \gamma_{inst}$	[-]			1,	,2		
fischer injection system T-BONE Performances Characteristic values for static or quas internal threaded anchors RG MI and	i-static ac	tion under	tensile load	for fischer	r	Anne	ex C 6

Size	M8	M10	M12	M16	M20			
Displacement-Factors for tensile load ¹⁾								
Uncracked concrete; T	emperature rang	je I, II						
$\frac{\delta_{N0-Faktor}}{[mm/(N/mm^2)]}$	0,09	0,09	0,10	0,10	0,10			
δ _{N∞-Faktor}	0,10	0,10	0,12	0,12	0,12			
Cracked concrete; Tem	nperature range	i, ii						
$\frac{\delta_{N0-Faktor}}{[mm/(N/mm^2)]}$		0,12	0,12	0,13	0,13			
δ _{N∞-Faktor}		0,27	0,30	0,30	0,30			
Displacement-Factors	for shear load ²⁾	-						
Uncracked or cracked	concrete; Tempe	erature range I, II						
δ _{V0-Faktor}	0,11	0,11	0,10	0,10	0,09			
δ _{V∞-Faktor} [mm/kN]	0,12	0,12	0,11	0,11	0,10			
¹⁾ Calculation of effective displacement:			²⁾ Calculation of effective displacement:					
$\delta_{\text{N0}} = \delta_{\text{N0-Factor}} \cdot \tau_{\text{Ed}}$			$\delta_{V0} = \delta_{V0\text{-Factor}} \cdot V_{Ed}$					
$\delta_{N\infty} = \delta_{N\infty\text{-Factor}} \cdot \tau_{\text{Ed}}$			$\delta_{V\infty} = \delta_{V\infty\text{-Factor}} \cdot V_{\text{Ed}}$					
$(\tau_{Ed}$: Design value of	(τ_{Ed} : Design value of the applied tensile stress)			(V _{Ed} : Design value of the applied shear force)				

Table C9: Displacements for fischer internal threaded anchors RG MI

Size	M8	M10	M12	M16	M20			
Displacement-Factors for tensile load ¹⁾								
Uncracked concrete	; Temperature rang	ge I, II						
δ _{N0-Faktor} [mm/(N/mm ²	0,10	0,11	0,12	0,13	0,14			
$\delta_{N_{\infty}-Faktor}$	0,13	0,14	0,15	0,16	0,18			
Displacement-Facto	rs for shear load ²⁾							
Uncracked concrete	; Temperature rang	ge I, II						
δ _{V0-Faktor}	0,12	0,12	0,12	0,12	0,12			
δ _{V∞-Faktor} [mm/kN]	0,14	0,14	0,14	0,14	0,14			
1) Coloulation of offe	ative diselectores		2) Coloulation of a	ffeetive discloses				

¹⁾ Calculation of effective displacement:

 $\delta_{\text{N0}} = \delta_{\text{N0-Factor}} \cdot \tau_{\text{Ed}}$

 $\delta_{\mathsf{N}^{\infty}} = \delta_{\mathsf{N}^{\infty}\text{-}\mathsf{Factor}}\,\cdot\,\tau_{\mathsf{Ed}}$

(τ_{Ed} : Design value of the applied tensile stress)

²⁾ Calculation of effective displacement:

 $\delta_{\text{V0}} = \delta_{\text{V0-Factor}} \cdot V_{\text{Ed}}$

 $\delta_{V\infty} = \delta_{V\infty\text{-Factor}} \cdot V_{\text{Ed}}$

 $(V_{\mbox{\scriptsize Ed}}\mbox{:}$ Design value of the applied shear force)

fischer injection system T-BOND-PRO.1-FIS C700 HP PRO.1

Performances Displacements for anchor rods and fischer internal threaded anchors RG MI

-		for tensile loa	d ¹⁾				
Jncracked	concrete: T						
	concrete, r	emperature ra	ange I, II				
N0-Faktor	[mm/(N/mm²)]	0,09	0,09	0,10	0,10	0,10	0,10
N∞-Faktor	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	0,10	0,10	0,12	0,12	0,12	0,12
racked co	oncrete; Tem	perature ranç	ge I, II				
S _{N0-Faktor} [m	m/(N/mm ²)]-		0,12	0,12	0,13	0,13	0,13
δ _{N∞-Faktor}]]]/(]]/[]]]]]		0,27	0,30	0,30	0,30	0,30
Displaceme	ent-Factors	for shear load	2)				
Uncracked	or cracked	concrete; Ten	nperature rang	je I, II			
$\delta_{V0-Faktor}$	[mm/k]]	0,11	0,11	0,10	0,10	0,10	0,09
Sv∞-Faktor		0,12	0,12	0,11	0,11	0,11	0,10
1) Calculat	ion of effectiv	ve displacemer	nt:	²⁾ Calcul	ation of effectiv	ve displacemen	it:
$\delta_{N0} = \delta_{N0-Factor} \cdot \tau_{Ed}$			$\delta_{V0} = \delta_{V0-Factor} \cdot V_{Ed}$				
$\delta_{\text{N}\infty} = \delta_{\text{N}\infty\text{-Factor}}\cdot\tau_{\text{Ed}}$			$\delta_{V\infty} = \delta_{V\infty}\text{-Factor} \cdot V_{Ed}$				
$(\tau_{Ed}$: Design value of the applied tensile stress)			(V _{Ed} : Design value of the applied shear force)				

fischer injection system T-BOND-PRO.1-FIS C700 HP PRO.1