



# **ICC-ES Report**

ICC-ES | (800) 423-6587 | (562) 699-0543 | www.icc-es.org

ESR-2691

**Reissued 04/2017** This report is subject to renewal 04/2019.

**DIVISION: 03 00 00—CONCRETE** 

SECTION: 03 16 00—CONCRETE ANCHORS

**DIVISION: 05 00 00—METALS** 

SECTION: 05 05 19—POST-INSTALLED CONCRETE ANCHORS

**REPORT HOLDER:** 

## FISCHERWERKE GMBH & CO. KG

**WEINHALDE 14-18 72178 WALDACHTAL GERMANY** 

**EVALUATION SUBJECT:** 

## FISCHER FH II CARBON STEEL HEAVY DUTY SLEEVE ANCHOR FOR ANCHORING IN CRACKED AND UNCRACKED CONCRETE



Look for the trusted marks of Conformity!

"2014 Recipient of Prestigious Western States Seismic Policy Council (WSSPC) Award in Excellence"





A Subsidiary of CODE

ICC-ES Evaluation Reports are not to be construed as representing aesthetics or any other attributes not specifically addressed, nor are they to be construed as an endorsement of the subject of the report or a recommendation for its use. There is no warranty by ICC Evaluation Service, LLC, express or implied, as to any finding or other matter in this report, or as to any product covered by the report.







## **ICC-ES Evaluation Report**

## **ESR-2691**

Reissued April 2017 This report is subject to renewal April 2019.

www.icc-es.org | (800) 423-6587 | (562) 699-0543

A Subsidiary of the International Code Council®

DIVISION: 03 00 00—CONCRETE Section: 03 16 00—Concrete Anchors

**DIVISION: 05 00 00—METALS** 

Section: 05 05 19—Post-Installed Concrete Anchors

#### REPORT HOLDER:

fischerwerke GmbH & CO. KG WEINHALDE 14-18 72178 WALDACHTAL GERMANY +49 (0) 7443 12-0 www.fischer.de anwendungstechnik@fischer.de

#### **EVALUATION SUBJECT:**

fischer FH II CARBON STEEL HEAVY DUTY SLEEVE ANCHOR FOR ANCHORING IN CRACKED AND UNCRACKED CONCRETE

## 1.0 EVALUATION SCOPE

#### Compliance with the following codes:

- 2009 and 2006 International Building Code® (IBC)
- 2009 and 2006 International Residential Code® (IRC)
- 2013 Abu Dhabi International Building Code (ADIBC)<sup>†</sup>

 $^{\dagger}\text{The ADIBC}$  is based on the 2009 IBC. 2009 IBC code sections referenced in this report are the same sections in the ADIBC.

#### Property evaluated:

Structural

#### **2.0 USES**

The fischer FH II Carbon Steel Heavy Duty Sleeve Anchor is used to resist static, wind and seismic tension and shear loads in cracked and uncracked normal-weight and lightweight concrete having a specified compressive strength,  $f_c'$  of 2,500 psi to 8,500 psi (17.2 MPa to 58.6 MPa) [minimum of 24 MPa is required under ADIBC Appendix L, Section 5.1.1].

The fischer FH II anchors comply as anchors installed in hardened concrete in accordance with Section 1912 of the 2009 and 2006 IBC. The anchor system is an alternative to cast-in-place anchors described in Section 1911 of the 2009 and 2006 IBC. The anchors may also be used where an engineered design is submitted in accordance with Section R301.1.3 of the 2009 and 2006 IRC.

#### 3.0 DESCRIPTION

#### 3.1 FH II Carbon Steel Heavy Duty Sleeve Anchor:

**3.1.1 General:** The fischer FH II Carbon Steel Heavy Duty Sleeve Anchor, designated as the FH II, is a torque-controlled, sleeve-type mechanical expansion anchor. The components, dimensions and installation criteria are set forth in Tables 1, 2 and 4, and Figures 1, 2 and 3 of this report. Four head configurations are available: Version S, Version B, Version H and Version SK. The head configurations are illustrated in Figure 3. All carbon steel parts have a minimum 0.0002 inch (5 μm) thick galvanized zinc coating according to DIN EN ISO 4042.

Application of torque at the head of the anchor causes the cone to be drawn into the expansion sleeve. This cone movement in turn causes the expansion sleeve to expand against the wall of the drilled hole. The ribs on the collapsible sleeve prevent rotation of the expansion sleeve and cone during application of torque. Application of the specified installation torque induces a tension force in the concrete acting through the component being fastened. Telescopic deformation of the collapsible sleeve prevents buildup of pre-compression in the expansion sleeve in cases where the steel sleeve is in contact with the washer, and permits the closure of gaps between the work surface and the component being fastened. Application of tension loads that exceed the pre-compression force in the anchor will cause the cone to displace further into the expansion sleeve (follow-up expansion), generating additional expansion force.

**3.1.2 FH II S (Hexagonal Screw Version):** The anchor consists of an ISO 898-1, Class 8.8 hexagonal screw, steel washer, steel sleeve, collapsible plastic sleeve, steel expansion sleeve and steel cone. This anchor is available in carbon steel only. The material specifications are as follows:

- Hexagonal screw: Carbon steel complying with ISO 898-1, Class 8.8
- Washer: Carbon steel complying with EN 10139.
- Expansion cone: Carbon steel complying with EN 10277.
- Expansion sleeve: Carbon steel complying with EN 10305.
- Steel sleeve: Carbon steel complying with EN 10305-1.
- Collapsible sleeve: Plastic blend of polymer complying with ISO 527-1 and ISO 527-2.





- **3.1.3** FH II B (Bolt Version with Threaded Rod): The FH II B has the same components and material specifications as the FH II S (hexagonal screw) except that the hexagonal screw is replaced by a carbon steel threaded rod complying with ISO 898-1 Class 8.8 and a carbon steel hexagonal nut complying with ISO 898-2.
- **3.1.4 FH II H (Hexagonal Cap Nut Version):** The FH II H has the same components and material specifications as the FH II B (bolt) except that a carbon steel hexagonal cap nut complying with ISO 898-2 replaces the nut.
- **3.1.5** FH II SK (Countersunk Screw Version): The FH II SK has the same components and material specifications as the FH II S (hexagonal screw) except that the hexagonal screw head is configured for countersunk applications, is configured to accept a hexagonal Allen wrench, and is provided with a conical washer. The screw is formed from carbon steel complying with ISO 898-1 and the conical washer is formed from carbon steel complying with EN 10277.

#### 3.2 Concrete:

Normal-weight and lightweight concrete must conform to Sections 1903 and 1905 of the IBC, as applicable.

#### 4.0 DESIGN AND INSTALLATION

#### 4.1 Strength Design:

**4.1.1 General**: Design strength of anchors in accordance with the 2006 IBC and 2006 IRC must be in accordance with ACI 318-05 Appendix D and this report.

Design strength of anchors in accordance with the 2009 IBC as well as Section 301.1.3 of the 2009 IRC must be determined in accordance with ACI 318-08 Appendix D and this report. Design examples according to the 2006 IBC are given in Figures 4 through 7 of this report. Design parameters are based on the 2009 IBC (ACI 318-08) unless noted otherwise in Section 4.1.1 through 4.1.12 of this report. The strength design of anchors must comply with ACI 318 D.4.1, except as required in ACI 318 D.3.3.

Strength reduction factors,  $\phi$ , as given in ACI 318 D.4.4 must be used for load combinations calculated in accordance with Section 1605.2.1 of the IBC and Section 9.2 of ACI 318. Strength reduction factors,  $\phi$ , as given in ACI 318 D.4.5 must be used for load combinations calculated in accordance with ACI 318 Appendix C.

The value of  $f_c'$  used in the calculations must be limited to 8,000 psi (55.2 MPa) maximum, in accordance with ACI 318 D.3.5. Strength reduction factors,  $\phi$ , corresponding to ductile steel elements may be used for the FH II.

- **4.1.2 Requirements for Static Steel Strength in Tension,**  $N_{sa}$ : The nominal steel strength of a single anchor in tension in accordance with ACI 318 D.5.1.2,  $N_{sa}$  is given in Table 3 of this report. Strength reduction factors,  $\Phi$ , corresponding to ductile steel elements may be used for the FH II.
- **4.1.3** Requirements for Concrete Breakout Strength in Tension,  $N_{cb}$  and  $N_{cbg}$ : The nominal concrete breakout strength of a single anchor or group of anchors in tension,  $N_{cb}$  and  $N_{cbg}$ , respectively must be calculated in accordance with ACI 318 D.5.2, with modifications as described in this section. The basic concrete breakout strength of a single anchor in tension,  $N_{b}$ , must be calculated according to ACI 318 D.5.2, using the values of  $k_{cr}$  and  $h_{ef}$  and as given in Table 3 of this report. The value of  $f'_{c}$  is limited to 8,000 psi (55.2 MPa), maximum, in accordance with ACI 318 D.3.5. The nominal concrete breakout strength in tension in regions where analysis

indicates no cracking at service loads in accordance with ACI 318 D.5.2.6 shall be calculated with  $\Psi_{cN}$  = 1.0 and using the value of  $k_{uncr}$  as given in Table 3 of this report.

**4.1.4 Requirements for Critical Edge Distance, Splitting:** In applications where  $c < c_{ac}$  and supplemental reinforcement to control splitting of the concrete is not present, the concrete breakout strength in tension for uncracked concrete, calculated according to ACI 318 D.5.2, must be further multiplied by the factor  $\Psi_{cp,N}$  according to ACI 318 D.5.2.7 (Eq-1 of this report). In lieu of ACI 318 D.8.6, values of  $c_{ac}$  provided in Table 4 of this report must be used.

$$\Psi_{cp,N} = \frac{c}{c_{ac}} \tag{Eq-1}$$

whereby the factor  $\Psi_{cp,N}$  need not to be taken as less than  $\frac{1.5 h_{\rm ef}}{c_{\rm ac}}$ 

For all other cases  $\Psi_{cp,N} = 1.0$ .

- **4.1.5** Requirements for pullout strength in tension,  $N_{pn}$ : The nominal pullout strength of a single anchor in tension in accordance with ACI 318 D.5.3 in cracked and uncracked concrete,  $N_{p,cr}$  and  $N_{p,uncr}$ , respectively, do not need to be evaluated.
- **4.1.6** Requirements for Static Steel Strength in Shear,  $V_{sa}$ : In lieu of the value of the nominal steel strength values of  $V_{sa}$  as given in ACI 318, D.6.1.2 in shear, the values of  $V_{sa}$  for single anchor given in Table 3 of this report shall be used and not derived by calculation. Strength reduction factors,  $\varphi$ , corresponding to ductile elements may be used for the FH II.
- **4.1.7** Requirements for Static Concrete Breakout Strength in Shear  $V_{cb}$  or  $V_{cbg}$ : The nominal concrete breakout strength of a single anchor or group of anchors in shear,  $V_{cb}$  or  $V_{cbg}$ , respectively must be calculated in accordance with ACI 318 D.6.2, with modifications as described in this section. The basic concrete breakout strength of a single anchor in shear,  $V_b$ , must be calculated in accordance with ACI 318 D.6.2.2 using the value of  $I_e$  and  $d_a$  given in Table 3 of this report.
- **4.1.8 Requirements for Static Concrete Pryout Strength in Shear**  $V_{cp}$  **or**  $V_{cpg}$ **:** The nominal concrete pryout strength of a single anchor or group of anchors in shear,  $V_{cp}$  or  $V_{cpg}$ , must be calculated in accordance with ACI 318 D.6.3, modified by using the value of  $k_{cp}$  provided in Table 3 of this report and the value of  $N_{cb}$  or  $N_{cbg}$  as calculated in accordance with Section 4.1.3 of this report.
- **4.1.9 Requirements for Minimum Member Thickness, Minimum Anchor Spacing and Minimum Edge Distance:** In lieu of ACI 318 D.8.5, minimum member thickness,  $h_{a,min}$ , must comply with Table 4 of this report. In lieu of ACI 318 D.8.3, minimum edge distance and minimum spacing,  $c_{a,min}$  and  $s_{a,min}$  must comply with Table 4 of this report. Intermediate values between  $s_{min}$  and  $c_{min}$  can be calculated by linear interpolation. Figures 4 through 7 of this report provide more detail.

#### 4.1.10 Requirements for Seismic Design:

**4.1.10.1 General:** For load combinations including seismic, the design must be performed according to ACI 318 D.3.3, as modified by Section 1908.1.9 of the 2009 IBC or Section 1908.1.16 of the 2006 IBC.

The nominal steel strength and the nominal concrete breakout strength for anchors in tension, and the nominal concrete breakout strength and pryout strength for anchors in shear, must be calculated according to ACI 318 Sections D.5 and D.6, respectively, taking into account the corresponding values in Table 3 and 4 of this report. The anchors comply with ACI 318 Section D.1 as ductile steel elements and must be designed in accordance with ACI 318-05 Section D.3.3.4 or D.3.3.5 or ACI 318-08 Section D.3.3.4, D.3.3.5 or D.3.3.6.

- **4.1.10.2 Seismic Tension:** The nominal steel strength and nominal concrete breakout strength for anchors in tension must be calculated according to ACI 318 D.5.1 and D.5.2, as described in Sections 4.1.2 and 4.1.3 of this report and in accordance with ACI 318 Section D.5.3.2. The value for pullout strength in tension for seismic loads,  $N_{eq}$ , does not need to be evaluated.
- **4.1.10.3 Seismic Shear:** The nominal concrete breakout strength and pryout strength for anchors in shear must be calculated according to ACI 318 Section D.6.2 and D.6.3, as described in Sections 4.1.7 and 4.1.8 of this report. In accordance with ACI 318 D.6.1.2, the appropriate value for nominal steel strength in shear for seismic loads,  $V_{eq}$ , described in Table 3 of this report must be used in lieu of  $V_{sa}$ . Strength reduction factors,  $\phi$ , corresponding to ductile elements must be used for the FH II.
- **4.1.11 Requirements for Interaction of Tensile und Shear Forces:** For loadings that include combined tension and shear, the design must be performed in accordance with ACI 318 D.7.
- **4.1.12 Lightweight Concrete:** For the use of anchors in lightweight concrete, the modification factor  $\lambda_a$  equal to 0.8 $\lambda$  is applied to all values of  $\sqrt{f_c'}$  affecting  $N_n$  and  $V_n$ .

For ACI 318-08 (2009 IBC), λ shall be determined in accordance with ACI 318-08.

For ACI 318-05 (2006 IBC),  $\lambda$  shall be taken as 0.75 for all lightweight concrete and 0.85 for sand-lightweight concrete. Linear interpolation shall be permitted if partial sand replacement is used.

#### 4.2 Allowable Stress Design (ASD):

**4.2.1 General:** Design values for use with allowable stress design load combinations calculated in accordance with Section 1605.3 of the IBC shall be established using Eq-2 and Eq-3:

$$T_{allowable,ASD} = \frac{\phi N_n}{\alpha}$$
 (Eq-2)

and

$$V_{allowable,ASD} = \frac{\phi V_n}{\alpha}$$
 (Eq-3)

where:

 $T_{allowable ASD}$  = Allowable tension load [lbf or kN]

 $V_{allowable.ASD}$  = Allowable shear load [lbf or kN]

- $\phi N_n$  = Lowest design strength of an anchor or anchor group in tension as determined in accordance with ACI 318 Appendix D and 2009 IBC Section 1908.1.9, or 2006 IBC Section 1908.1.16, as applicable (lbf or kN).
- $\phi V_n$  = Lowest design strength of an anchor or anchor group in shear as determined in accordance with ACI 318 Appendix D and 2009 IBC Section 1908.1.9, or 2006 IBC Section 1908.1.16, as applicable (lbf or kN).

 $\alpha$  = Conversion factor calculated as a weighted average of the load factors for the controlling load combination. In addition,  $\alpha$  shall include all applicable factors to account for nonductile failure modes and required over-strength.

An example of allowable stress design values for illustrative purposes is shown in Table 5 of this report.

**4.2.2 Interaction of Tensile and Shear Forces:** The interaction must be calculated in accordance and consistent with ACI 318 Section D.7 as follows:

For shear loads  $V \le 0.2~V_{allowable,ASD}$ , the full allowable load in tension  $T_{allowable,ASD}$  must be permitted.

For tension loads  $T \le 0.2~T_{allowable,ASD}$ , the full allowable load in shear  $V_{allowable,ASD}$  must be permitted.

For all other cases Eq-4 applies:

$$\frac{T}{T_{allowable,ASD}} + \frac{V}{V_{allowable,ASD}} \le 1.2$$
 (Eq-4)

#### 4.3 Installation:

Installation parameters are provided in Tables 2 and 4 and in Figure 2 of this report. Anchor locations must be in accordance with this report and the plans and specifications approved by the code official. The FHII anchors must be installed according to the manufacturer's published instructions and this report. Anchors must be installed in holes drilled into the concrete using carbidetipped masonry drill bits complying with the requirements of Table 2 of this report. The minimum drilled hole depth is given in Table 2. The predrilled hole must be cleaned free of dust and debris using a hand pump, compressed air or vacuum. The anchor must be hammered into the predrilled hole until the proper nominal embedment depth is achieved. The anchor must be tightened against the washer until the torque values  $T_{inst}$  specified in Table 2 of this report are achieved.

#### 4.4 Special Inspection:

Special inspection is required, in accordance with Section 1704.15 of the 2009 IBC or Section 1704.13 of the 2006 IBC. The special inspector must make periodic inspections during anchor installation to verify anchor type, anchor dimensions, concrete type, concrete compressive strength, hole dimensions, hole cleaning procedures, anchor spacing(s), edge distance(s), slab thickness, anchor embedment depth, tightening torque and adherence to manufacturer's published installation instructions. The special inspector must be present as often as required in accordance with the "statement of special inspection". Under the IBC, additional requirements as set forth in Sections 1705 and 1706 must be observed, where applicable.

## 5.0 CONDITIONS OF USE

The FH II anchors described in this report comply with, or are suitable alternatives to what is specified in, those codes listed in Section 1.0 of this report, subject to the following conditions:

- **5.1** Anchor sizes, dimensions and minimum embedment depths are as set forth in this report.
- 5.2 The anchors must be installed in accordance with the manufacturer's published installation instructions and this report. In case of a conflict, this report governs.
- 5.3 Anchors must be installed in cracked and uncracked normal-weight or lightweight concrete having a specified compressive strength, f'<sub>c</sub> of 2,500 psi to

- 8,500 psi (17.2 MPa to 58.6 MPa) [minimum of 24 MPa is required under ADIBC Appendix L, Section 5.1.1].
- **5.4** The values of  $f'_c$  used for calculation purposes shall not exceed 8,000 psi (55.2 MPa).
- 5.5 Strength design values must be established in accordance with Section 4.1 of this report.
- 5.6 Allowable stress design values must be established in accordance with Section 4.2 of this report.
- **5.7** Anchor spacing(s) and edge distance(s) as well as minimum member thickness must comply with Table 4 of this report.
- 5.8 Prior to installation, calculations and details demonstrating compliance with this report must be submitted to the code official. The calculations and details must be prepared by a registered design professional where required by the statues of the jurisdiction in which the project is to be constructed.
- 5.9 Since an ICC-ES acceptance criteria for evaluating data to determine the performance of expansion anchors subjected to fatigue or shock loading is unavailable at this time, the use of these anchors under such conditions is beyond the scope of this report.
- **5.10** Anchors may be installed in regions of concrete where cracking has occurred or where analysis indicates cracking may occur  $(f_t > f_t)$ , subject to the conditions of this report.
- 5.11 Anchors may be used to resist short-term loading due to wind or seismic forces, subject to the conditions of this report.
- 5.12 Where not otherwise prohibited in the code, FH II anchors are permitted for use with fire-resistancerated construction provided that at least one of the following conditions is fulfilled:

- Anchors are used to resist wind or seismic forces only.
- Anchors that support a fire-resistance-rated envelope or a fire-resistance-rated membrane, are protected by approved tire-resistance-rated materials, or have been evaluated for resistance to fire exposure in accordance with recognized standards.
- Anchors are used to support nonstructural elements.
- 5.13 Use of zinc-coated carbon steel anchors is limited to dry, interior locations.
- 5.14 Special inspection must be provided in accordance with Section 4.4 of this report.
- 5.15 Anchors are manufactured by fischerwerke, under an approved quality control program with inspections by ICC-ES.

#### 6.0 EVIDENCE SUBMITTED

Data in accordance with the ICC-ES Acceptance Criteria for Mechanical Anchors in Concrete Elements (AC193), dated October 2015, for use in cracked and uncracked concrete and quality control documentation.

#### 7.0 IDENTIFICATION

The anchors can be identified on the packaging label with the manufacturer's name (fischer) and address, anchor name, anchor size and evaluation report number (ICC-ES ESR-2691). The "fish" symbol, the letters FH II, the anchor diameter and the maximum fixing thickness are stamped on each anchor.

Example: ("fish") FH II 24/25 S, means 24 mm outer anchor diameter, 25 mm maximum thickness of fixture, S stands for Hexagonal Screw Version.

TABLE 1—ANCHOR DIMENSIONAL CHARACTERISTICS<sup>1</sup>

| Anchor<br>Version <sup>2</sup> | Nominal Bolt     | d <sub>bit</sub> | d <sub>s</sub> (mm) | <i>L</i> <sub>1</sub> (mm) | t <sub>fix</sub> 3( | t <sub>fix</sub> ³(mm) |         |                     |                     |                     | t <sub>washer</sub> |
|--------------------------------|------------------|------------------|---------------------|----------------------------|---------------------|------------------------|---------|---------------------|---------------------|---------------------|---------------------|
|                                | Diameter<br>(mm) | (mm)             |                     |                            | Min.                | Max.                   | l₁ (mm) | l <sub>2</sub> (mm) | I <sub>3</sub> (mm) | I <sub>4</sub> (mm) | (mm)                |
|                                | M8               | 12               | 12.0                | 74                         | 0                   | 250                    | 11      | 30                  | 10                  | 22                  | ≥1.8                |
|                                | M10              | 15               | 14.8                | 89                         | 0                   | 300                    | 13      | 35.5                | 10.5                | 26.5                | ≥2.3                |
| FH II S                        | M12              | 18               | 17.8                | 99                         | 0                   | 350                    | 16      | 41                  | 15                  | 26.5                | ≥2.7                |
| гппъ                           | M16              | 24               | 23.7                | 124                        | 0                   | 400                    | 19      | 46                  | 20                  | 38                  | ≥2.7                |
|                                | M20              | 28               | 27.5                | 148                        | 0                   | 600                    | 22.4    | 50                  | 17.5                | 61.5                | ≥3.4                |
|                                | M24              | 32               | 31.5                | 168                        | 0                   | 600                    | 22.4    | 55                  | 25                  | 74                  | ≥4.0                |
|                                | M8               | 12               | 12.0                | 74                         | 0                   | 250                    | 11      | 30                  | 10                  | 22                  | ≥1.8                |
|                                | M10              | 15               | 14.8                | 89                         | 0                   | 300                    | 13      | 35.5                | 10.5                | 26.5                | ≥2.3                |
| FH II B                        | M12              | 18               | 17.8                | 99                         | 0                   | 350                    | 16      | 41                  | 15                  | 26.5                | ≥2.7                |
| гппв                           | M16              | 24               | 23.7                | 124                        | 0                   | 400                    | 19      | 46                  | 20                  | 38                  | ≥2.7                |
|                                | M20              | 28               | 27.5                | 148                        | 0                   | 600                    | 22.4    | 50                  | 17.5                | 61.5                | ≥3.4                |
|                                | M24              | 32               | 31.5                | 168                        | 0                   | 600                    | 22.4    | 55                  | 25                  | 74                  | ≥4.0                |
| FH II H                        | M10              | 15               | 14.8                | 89                         | 0                   | 300                    | 13      | 35.5                | 10.5                | 26.5                | ≥2.3                |
|                                | M12              | 18               | 17.8                | 99                         | 0                   | 350                    | 16      | 41                  | 15                  | 26.5                | ≥2.7                |
|                                | M16              | 24               | 23.7                | 124                        | 0                   | 400                    | 19      | 46                  | 20                  | 38                  | ≥2.7                |
| FH II SK                       | M10              | 15               | 14.8                | 89                         | 6                   | 300                    | 13      | 35.5                | 10.5                | 26.5                | 0                   |
|                                | M12              | 18               | 17.8                | 99                         | 6                   | 350                    | 16      | 41                  | 15                  | 26.5                | 0                   |

For pound-inch units: 1 mm = 0.03937 inches

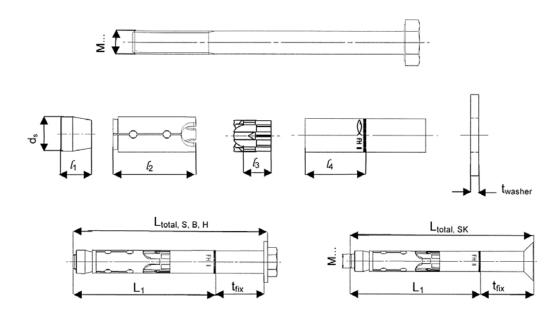
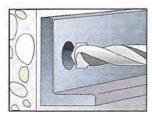
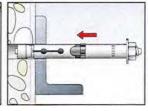


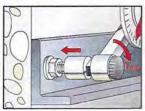

FIGURE 1—ANCHOR DIMENSIONAL CHARACTERISTICS

<sup>&</sup>lt;sup>1</sup> Figure 1 describes location of dimensions. All dimensions are nominal excluding manufacturing tolerances. <sup>2</sup> Figure 3 illustrates the available anchor versions. <sup>3</sup> Thickness applies to the attached fixture.


## TABLE 2—INSTALLATION INFORMATION<sup>1</sup>

| Characteristic                |                          |                        | Units  | Anchor Designation and Size |                 |                 |                 |                 |                 |  |
|-------------------------------|--------------------------|------------------------|--------|-----------------------------|-----------------|-----------------|-----------------|-----------------|-----------------|--|
|                               |                          | Symbol                 |        | FH II 12<br>M8              | FH II 15<br>M10 | FH II 18<br>M12 | FH II 24<br>M16 | FH II 28<br>M20 | FH II 32<br>M24 |  |
| Nominal drill ho              | le diameter <sup>2</sup> | d <sub>bit</sub>       | mm     | 12                          | 15              | 18              | 24              | 28              | 32              |  |
| Cutting diameter of drill bit |                          | d <sub>bit,min</sub>   | mm     | 12.10                       | 15.10           | 18.10           | 24.10           | 28.10           | 32.15           |  |
|                               |                          | $d_{bit,max}$          | mm     | 12.50                       | 15.50           | 18.50           | 24.55           | 28.55           | 32.70           |  |
| Minimum drill                 | hole denth               | h \                    | mm     | 80                          | 90              | 105             | 125             | 155             | 180             |  |
| William Grin                  | noie deptii              | h <sub>1,min</sub> ≥   | in.    | 3.15                        | 3.54            | 4.13            | 4.92            | 6.10            | 7.09            |  |
| Diameter of cle               |                          | d <sub>f,S,H,B</sub> ≤ | mm     | 14                          | 17              | 20              | 26              | 31              | 35              |  |
| in the fix                    | in the fixture⁴          |                        | in.    | 0.55                        | 0.67            | 0.79            | 1.02            | 1.22            | 1.38            |  |
| Diameter of co                | ountersunk               | d <sub>f. SK</sub>     | mm     | -                           | 24.5            | 31.6            |                 | -               |                 |  |
| hole in the                   | hole in the fixture      |                        | in.    | -                           | 0.97            | 1.25            | ı               | -               | ı               |  |
|                               | Type S                   | <b>T</b> inst          | Nm     | 22.5                        | 40              | 80              | 160             | 180             | 200             |  |
|                               | Type SK                  |                        |        | =                           | 40              | 80              | -               | -               | =               |  |
|                               | Type H                   |                        |        | ı                           | 40              | 80              | 90              | -               | ı               |  |
| Required installation         | Type B                   |                        |        | 17.5                        | 38              | 80              | 120             | 180             | 200             |  |
| torque                        | Type S                   |                        | ft-lbf | 16.6                        | 29.5            | 59.0            | 118.0           | 132.8           | 147.5           |  |
|                               | Type SK                  |                        |        | =                           | 29.5            | 59.0            | =               | -               | =               |  |
|                               | Type H                   |                        |        | =                           | 29.5            | 59.0            | 66.4            | -               | =               |  |
|                               | Type B                   |                        |        | 12.9                        | 28.0            | 59.0            | 88.5            | 132.8           | 147.5           |  |
| _                             | Type S                   |                        |        | 13                          | 17              | 19              | 24              | 30              | 36              |  |
| Wrench size <sup>3</sup>      | Type SK                  |                        |        | -                           | 6               | 8               | -               | -               | -               |  |
|                               | Type H                   | -                      | mm     | -                           | 17              | 19              | 24              | -               | -               |  |
|                               | Type B                   |                        |        | 13                          | 17              | 19              | 24              | 30              | 36              |  |
| Washer                        |                          | d <sub>w</sub>         | mm     | ≥20                         | ≥24             | ≥28             | ≥36             | ≥40             | ≥46             |  |
| Diameter                      |                          |                        | in.    | ≥0.79                       | ≥0.95           | ≥1.10           | ≥1.42           | ≥1.57           | ≥1.81           |  |


For pound-inch units: 1 mm = 0.03937 inches, 1 Nm = 0.7376 ft-lbf.


#### Installation:

- Step 1: Using the correct metric bit diameter,  $d_{bit}$  (Table 2), drill hole to minimum required hole depth  $h_{1,min}$  (Table 2) or deeper.
- Remove drilling debris with a blowout bulb or with compressed air. Step 2:
- Step 3: Using a hammer, tap the anchor through the part being fastened into the drilled hole until the washer is in contact with the fastened part. Do not expand anchor prior to installation.
- Step 4: Using a torque wrench, apply the specified installation torque T<sub>inst</sub> (Table 2).









<sup>&</sup>lt;sup>1</sup>All specifications excluding manufacturing tolerances. <sup>2</sup>Only metric drill bits must be used.

<sup>&</sup>lt;sup>3</sup>For Type SK Allen wrench size.

<sup>&</sup>lt;sup>4</sup>Tolerances complying with ISO 273

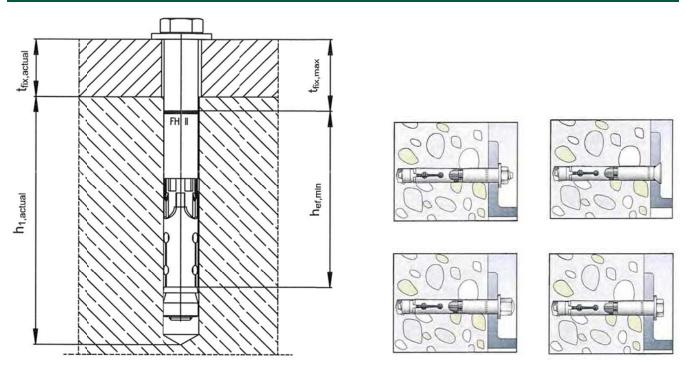



FIGURE 2—CORRECT INSTALLED ANCHOR

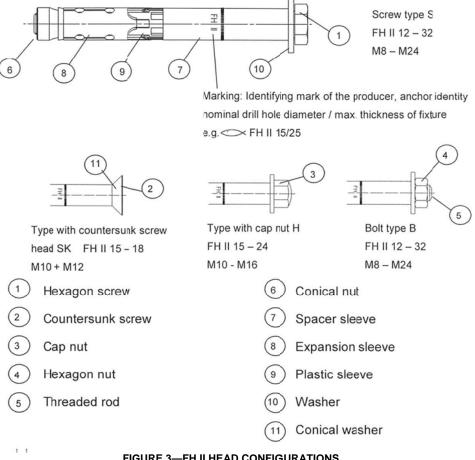



FIGURE 3—FH II HEAD CONFIGURATIONS

**TABLE 3—DESIGN INFORMATION** 

|                                             |                                         | 1                                    | Nominal anchor diameter FH II |                                  |            |            |            |            |            |  |
|---------------------------------------------|-----------------------------------------|--------------------------------------|-------------------------------|----------------------------------|------------|------------|------------|------------|------------|--|
| Design parameter                            |                                         | Symbol                               | Units                         | M8   M10   M12   M16   M20   M24 |            |            |            |            |            |  |
|                                             |                                         |                                      | m.m.                          | 12                               | 15         | 18         | 24         | 28         | 32         |  |
| Outside diameter of anchor                  |                                         | $d_a (d_o)^{8,9}$                    | mm<br>in.                     | 0.47                             | 0.59       | 0.71       | 0.94       | 1.10       | 1.26       |  |
|                                             |                                         |                                      |                               | 60                               | 70         | 80         | 100        | 125        | 150        |  |
| Effective min. em                           | bedment depth 1                         | $h_{\it ef,min}$                     | mm<br>in.                     | 2.36                             | 2.76       | 3.15       | 3.94       | 4.92       | 5.91       |  |
| Anchor ca                                   | otogory <sup>2</sup>                    | 1,2 or 3                             | -                             | 1                                | 1          | 1          | 1          | 1          | 1          |  |
| Strength reduction steel failure            | factor for tension,                     | φ                                    | -                             | - 0.75                           |            |            |            |            |            |  |
| Strength reduction steel failure            | factor for shear,                       | φ                                    | -                             |                                  |            | 0.         | 65         |            |            |  |
| Strength reduction                          |                                         | 1                                    | Cond.A                        |                                  |            | 0.         | 75         |            |            |  |
| concrete failu                              | re modes <sup>4,5</sup>                 | $\phi$                               | Cond.B                        |                                  |            |            | 65         |            |            |  |
| Strength reduction                          | factor for shear,                       | φ                                    | Cond.A                        |                                  |            | 0.         | 75         |            |            |  |
| concrete failu                              | re modes <sup>4,5</sup>                 | Ψ                                    | Cond.B                        |                                  |            | 0.         | 70         |            |            |  |
| Yield strength o                            | of anchor steel                         | f <sub>ya</sub>                      | N/mm²                         |                                  |            | 64         | 40         |            |            |  |
| rieid stierigtii d                          | n anchor steel                          | Iya                                  | lbf/in.2                      |                                  |            | 92,        | 824        |            |            |  |
| Ultimate strength                           | of anchor steel                         | f <sub>uta</sub>                     | N/mm²                         |                                  |            |            | 00         |            |            |  |
| Onlinate strength                           | of affording steel                      | ruta                                 | lbf/in.²                      |                                  |            | 116        | ,030       |            |            |  |
| Tensile str                                 | ess area                                | $A_{se}$                             | mm²                           | 36.6                             | 58.0       | 84.3       | 156.7      | 244.8      | 352.5      |  |
| 1 0110110 011                               |                                         |                                      | in.²                          | 0.057                            | 0.090      | 0.131      | 0.243      | 0.379      | 0.546      |  |
| Steel strengt                               | h in tension                            | $N_{\text{seN}}$ $(N_{\text{sa}})^9$ | kN                            | 29                               | 46         | 67         | 125        | 196        | 282        |  |
|                                             |                                         | (N <sub>sa</sub> ) °                 | lbf                           | 6,516                            | 10,337     | 15,056     | 28,090     | 44,045     | 63,370     |  |
| Effectiveness factor                        | cracked concrete                        | k <sub>cr</sub>                      | SI                            | 7.1                              | 8.8        | 8.8        | 10         | 10         | 10         |  |
|                                             |                                         | Oi .                                 | Imp                           | 17                               | 21         | 21         | 24         | 24         | 24         |  |
| Effectiveness factor                        | cracked concrete                        | <b>K</b> uncr                        | SI<br>Imp                     | 11.3<br>27                       | 11.3<br>27 | 11.3<br>27 | 12.6<br>30 | 12.6<br>30 | 12.6<br>30 |  |
| Additional effective uncracked              | reness factor for concrete <sup>6</sup> | $\Psi_{c,N}$                         | -                             | 1.0                              | 1.0        | 1.0        | 1.0        | 1.0        | 1.0        |  |
| Pullout strength un                         | cracked concrete <sup>7</sup>           | N <sub>p,uncr</sub>                  | not decisive                  |                                  |            |            |            |            |            |  |
| Pullout strength cr                         | acked concrete 7                        | $N_{p,cr}$                           | not decisive                  |                                  |            |            |            |            |            |  |
| Tension pullout st                          | rength seismic 7                        | $N_{eq}$                             | not decisive                  |                                  |            |            |            |            |            |  |
| Steel strength i                            | n shear S SK                            |                                      | kN                            | 33                               | 59         | 76         | 146        | 174        | 217        |  |
| Otoci strongti i                            | ii siicai o, oit                        | $V_{sa}$                             | lbf                           | 7,419                            | 13,264     | 17,085     | 32,822     | 39,117     | 48,784     |  |
| Steel strength                              | in shear B. H                           | ▼ Sa                                 | kN                            | 27                               | 41         | 62         | 119        | 146        | 169        |  |
| Ctool off origin                            |                                         |                                      | lbf                           | 6,070                            | 9,217      | 13,938     | 26,752     | 32,822     | 37,993     |  |
| Steel strength in sh                        | ear. seismic S.SK                       |                                      | kN                            | 25                               | 38         | 57         | 110        | 143        | 174        |  |
| Steel strength in shear, seismic B,H        |                                         | $V_{eq}$                             | lb                            | 5,620                            | 8,543      | 12,814     | 24,729     | 32,148     | 39,117     |  |
|                                             |                                         | 09                                   | kN<br>                        | 17                               | 31         | 46         | 98         | 119        | 169        |  |
|                                             | Coefficient for an aut atronath         |                                      | lb                            | 3,822                            | 6,969      | 10,341     | 22,031     | 26,752     | 37,993     |  |
| Coefficient for pryout strength             |                                         | k <sub>cp</sub>                      | [-]                           | 1                                | 20         | 20         | 2          | 50         | 64         |  |
| Effective length of anchor in shear loading |                                         | I <sub>e</sub>                       | mm                            | 24                               | 30         | 36<br>1.42 | 48         | 56         | 1.56       |  |
| loading                                     |                                         |                                      | in.                           | 0.94                             | 1.18       |            | 1.88       | 2.20       | 1.56       |  |
| Avial atiti                                 | cracked concrete                        | $eta_{m}$                            | kN/mm<br>10³lbf/in            | 21<br>120                        | 24<br>137  | 27<br>154  | 33<br>188  | 39<br>223  | 45<br>257  |  |
| Axial stiffness in<br>service load range    |                                         | -                                    | kN/mm                         | 65                               | 91         | 118        | 171        | 223        | 277        |  |
| Tool vioc load range                        | uncracked concrete                      | $eta_{m}$                            | 10 <sup>3</sup> lbf/in        | 371                              | 520        | 674        | 976        | 1,279      | 1,582      |  |
|                                             | concrete                                |                                      | וו/וטו-טו                     | J/ I                             | 520        | 0/4        | 310        | 1,219      | 1,002      |  |

<sup>&</sup>lt;sup>1</sup>Figure 2 illustrates the location of h<sub>ef,min</sub>.

<sup>&</sup>lt;sup>2</sup>Sections ACI 318 Section D.4.4 and D.4.5 set forth the permitted strength reduction factor  $\phi$  based on anchor category.

<sup>&</sup>lt;sup>3</sup>The FH II anchors are considered as ductile steel element as defined by ACI 318 D.1.

 $<sup>^4</sup>$ Condition A requires supplemental reinforcement, while Condition B applies where supplemental reinforcement is not provided or where pullout or pryout governs, as set forth in ACI 318 D.4.4(c). The tabulated value of  $\phi$  applies when the load combinations of Section 1605.2.1 of the IBC or ACI 318 9.2 are used. If the load combinations of ACI 318 Appendix C are used, the appropriate value of  $\phi$  must be determined in accordance with ACI 318 D.4.5(c).

<sup>&</sup>lt;sup>5</sup>Anchors are permitted to be used in lightweight concrete provided that the provisions in accordance with Section 4.1.12 of this report are taken into account.

<sup>&</sup>lt;sup>6</sup>The value  $\Psi_{c,N}$  = 1.0 for all design cases.

As described in Section 4.1.5 of this report, pullout resistance is not decisive.

<sup>&</sup>lt;sup>8</sup>All dimensions are nominal excluding manufacturing tolerances.

<sup>&</sup>lt;sup>9</sup>The notation in brackets is for the 2006 IBC.

TABLE 4—EDGE DISTANCE, SPACING AND MEMBER THICKNESS REQUIREMENTS<sup>1,2</sup>

| Dimension                            | Symbol                    | Units | FH II 12<br>M8 | FH II 15<br>M10 | FH II 18<br>M12 | FH II 24<br>M16 | FH II 28<br>M20 | FH II 32<br>M24 |
|--------------------------------------|---------------------------|-------|----------------|-----------------|-----------------|-----------------|-----------------|-----------------|
| Minimum thickness of                 | 6                         | [mm]  | 120            | 140             | 160             | 200             | 250             | 300             |
| concrete member                      | <b>h</b> <sub>a,min</sub> | [in.] | 4.75           | 5.50            | 6.25            | 7.88            | 9.88            | 11.88           |
| Minimum spacing <sup>1,3</sup>       | S <sub>a,min</sub>        | [mm]  | 60             | 70              | 80              | 100             | 120             | 160             |
| winimum spacing                      | for c <sub>a</sub> ≥      | [mm]  | 100            | 120             | 160             | 220             | 240             | 380             |
| Minimum spacing <sup>1,3</sup>       | S <sub>a,min</sub>        | [in.] | 2.36           | 2.76            | 3.15            | 3.94            | 4.72            | 6.30            |
| winimum spacing                      | for c <sub>a</sub> ≥      | [in.] | 3.94           | 4.72            | 6.30            | 8.66            | 9.45            | 14.96           |
| Minimum adam diatan a 1,3            | C <sub>a,min</sub>        | [mm]  | 60             | 70              | 80              | 100             | 120             | 180             |
| Minimum edge distance <sup>1,3</sup> | for s <sub>a</sub> ≥      | [mm]  | 120            | 140             | 200             | 240             | 260             | 400             |
| Min:                                 | C <sub>a,min</sub>        | [in.] | 2.36           | 2.76            | 3.15            | 3.94            | 4.72            | 7.09            |
| Minimum edge distance <sup>1,3</sup> | for s <sub>a</sub> ≥      | [in.] | 4.72           | 5.51            | 7.87            | 9.45            | 10.24           | 15.75           |
| Critical edge distance <sup>2</sup>  |                           | [mm]  | 155            | 165             | 170             | 225             | 265             | 285             |
| Chilical edge distance               | C <sub>ac</sub>           | [in.] | 6.10           | 6.50            | 6.69            | 8.86            | 10.43           | 11.22           |

According to section 4.1.9 of this report.

TABLE 5—EXAMPLE ALLOWABLE STRESS DESIGN VALUES FOR ILLUSTRATIVE PURPOSES

| Anchor type<br>FH II S, SK, B, H | Effective Embedment depth h <sub>ef</sub> | Allowable Tension Load |
|----------------------------------|-------------------------------------------|------------------------|
| FH II 12 M8                      | 2.36 in                                   | 2,150 lbf              |
| FH II 12 M8                      | 60 mm                                     | 9.57 kN                |
| FH II 15 M10                     | 2.76 in                                   | 2,719 lbf              |
| FH II 15 MITO                    | 70 mm                                     | 12.05 kN               |
| FH II 18 M12                     | 3.15 in                                   | 3,315 lbf              |
| FH II 18 WI12                    | 80 mm                                     | 14.73 kN               |
| FH II 24 M16                     | 3.94 in                                   | 5,152 lbf              |
| FH II 24 WITO                    | 100 mm                                    | 22.77 kN               |
| FH II 28 M20                     | 4.92 in                                   | 7,189 lbf              |
| FH II 28 WI20                    | 125 mm                                    | 31.82 kN               |
| FH II 32 M24                     | 5.91 in                                   | 9,465 lbf              |
| ГП II 32 IVI24                   | 150 mm                                    | 41.83 kN               |

Design Assumptions:

<sup>&</sup>lt;sup>2</sup>According to section 4.1.4 of this report.

<sup>&</sup>lt;sup>3</sup>Intermediate values by linear interpolation.

Single anchor with static tension load only.

<sup>&</sup>lt;sup>2</sup>Concrete determined to remain uncracked for the life of the anchorage.

<sup>&</sup>lt;sup>3</sup>Load combinations from ACI 318 Section 9.2 (no seismic loading). <sup>4</sup>30% dead load and 70% live load, controlling load combination 1.2 D + 1.6 L.

<sup>&</sup>lt;sup>5</sup>Calculation of weighted average for  $\alpha = 0.3 \times 1.2 + 0.7 \times 1.6 = 1.48$ .

 $<sup>^6</sup>f'_c$  = 2,500 psi (17.2 MPa) (normal weight concrete).

 $_{\text{ca1}}^{7}$   $c_{\text{a1}}$  =  $c_{\text{a2}}$   $\geq$   $c_{\text{ac}}$ 

 $<sup>^{8}</sup>h \geq h_{min}$ .

<sup>&</sup>lt;sup>9</sup>Condition B according to ACI 318 Appendix D, Section 4.4(c), no supplementary reinforcement is present.

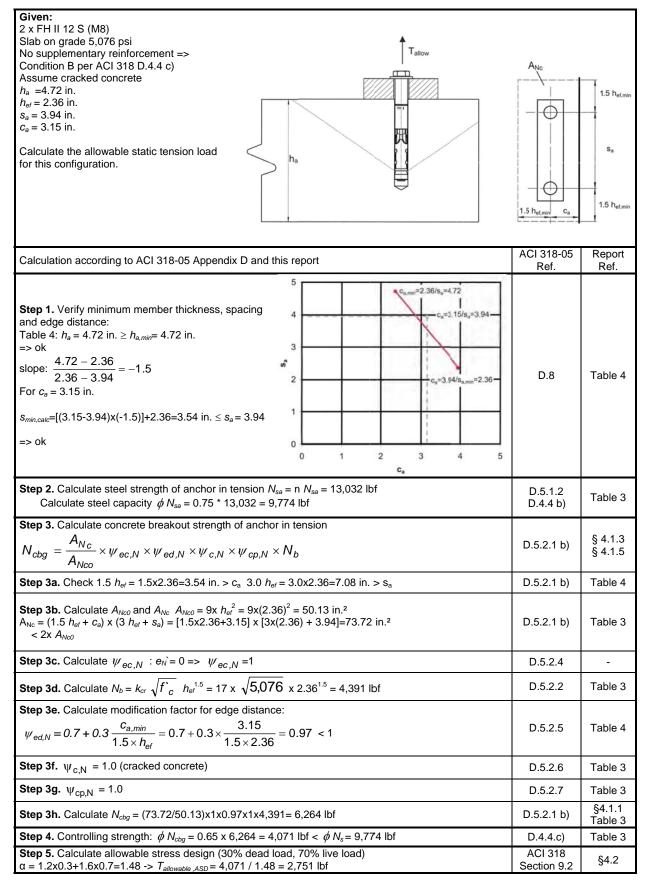



FIGURE 4—EXAMPLE CALCULATION FOR TENSION CAPACITY (IMPERIAL UNITS)

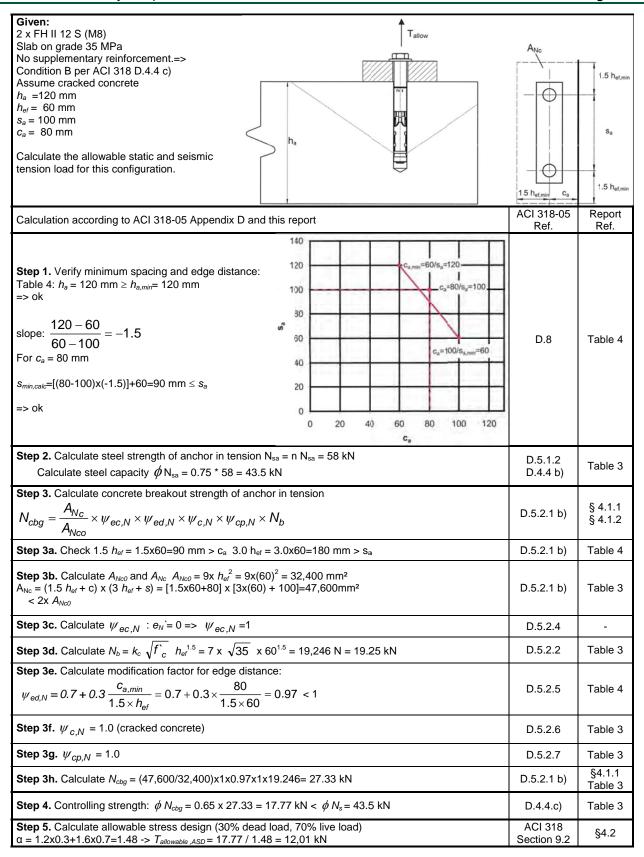



FIGURE 5—EXAMPLE CALCULATION FOR TENSION CAPACITY (SI UNITS)

| Given: Vallow                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                   |                     |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|---------------------|
| 2 x FH II 12 S (M8) Slab on grade = 5,076 psi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                   |                     |
| No supplementary reinforcement. =>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Ava               | 1                   |
| Condition B per ACI 318 D.4.4 c)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1.10              | 1                   |
| Assume cracked concrete                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                   | 1.5 C <sub>a1</sub> |
| h <sub>a</sub> =4.72 in.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $ +$ $\oplus$ $+$ | <del>   </del>      |
| $h_{ef} = 2.36 \text{ in.}$ 1.5 $c_{a1}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                   | s <sub>2</sub> /2   |
| $S_a = 3.94 \text{ in.}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ,                 |                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | allow             | -                   |
| $c_{a2} = 7.87 \text{ in.}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                   | s <sub>4</sub> /2   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                   | 1 +                 |
| Calculate the allowable static shear                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                   | 1.5 c <sub>a1</sub> |
| load for this configuration.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Ca1               | 1.5 Ca1             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ·                 |                     |
| Calculation according to ACI 318-05 Appendix D and this report                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ACI 318-          | Report              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 05 Ref.           | Ref.                |
| Step 1. Verify minimum spacing and edge distance according to Figure 4 – Tension                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | D.8               | Figure 4            |
| <b>Step 2.</b> Calculate steel strength of anchor in shear $V_{sg} = n V_{sa} = 14,838$ lbf                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | D.6.1             | Toble 2             |
| Calculate steel capacity $\phi$ $V_{\rm sg}$ = 0.65 * 14,832 = 9,645 lbf                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | D.4.4 b)          | Table 3             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                   |                     |
| Step 3. Calculate concrete breakout strength of anchor in shear                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | D 0 0 4           | 6444                |
| $V = \frac{A_{VC}}{V} \times W \times W \times W \times V$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | D.6.2.1           | § 4.1.4             |
| $V_{cbg} = \frac{A_{Vc}}{A_{Vc0}} \times \psi_{ec,V} \times \psi_{ed,V} \times \psi_{c,V} \times V_{b}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | b)                | § 4.1.6             |
| VCO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                   |                     |
| <b>Step 3a.</b> Check 3 $c_{a1} = 3x3.15 = 9.45$ in. > s = 3.94 in. s <sub>a</sub> controls                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                   |                     |
| 1.5 $c_{a1}$ = 1.5x3.15=4.72 in. < $h_a$ $c_{a1}$ controls                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | D.6.2.2           | _                   |
| $1.5 c_{a1} < c_{a2}$ $c_{a1}$ controls                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                   |                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                   |                     |
| <b>Step 3b.</b> Calculate $A_{Vc0}$ and $A_{Vc}$ $A_{Vc} = 4.5 \times c_1^2 = 4.5 \times (3.15)^2 = 44.65 \text{ in.}^2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Deaa              |                     |
| $A_{vc0} = (1.5 c_{a1}) \times (3 c_{a1} + s) = [1.5 \times 3.15] \times [3 \times (3.15) + 3.94] = 63.27 \text{ in.}^2 < 2 \times A_{Vc0}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | D.6.2.2           | -                   |
| <b>Step 3c.</b> Calculate $\psi_{ec,v}$ : $ev = 0 \Rightarrow \psi_{ec,v} = 1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | D.6.2.5           | -                   |
| 117                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                   |                     |
| Step 3d. Calculate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                   |                     |
| $V_{1} = 7$ $f'_{1} \times f_{2} \times f_{3} \times f_{4} \times f_{5} \times$ | D.6.2.2           | -                   |
| $V_b = 7 \sqrt{f_c} \times \sqrt{d_0} \times C_{a1}^{1.5} \times (\frac{le}{d_0})^{0.2} = 7\sqrt{5,076} \times \sqrt{0.47} \times 3.15^{1.5} \times (\frac{0.94}{0.47})^{0.2} = 2,196 \text{ lbf}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                   |                     |
| -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                   |                     |
| Step 3e. Calculate modification factor for edge distance:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | D.6.2.6           | _                   |
| $c_{a2} = 7.87 \ge 1.5 \text{ x } c_{a1} = 7.2$ $\psi_{ed,V} = 1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | D.0.2.0           |                     |
| Stan 3f 1// - 1.0 (cracked concrete)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | D 6 2 7           |                     |
| Step 3f. $\psi_{c,V} = 1.0$ (cracked concrete)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | D.6.2.7           | -                   |
| <b>Step 3g.</b> Calculate V <sub>cbg</sub> = (63.27/44.65)x1x1x2,196= 3,112 lbf                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | D.6.2.1 b)        | -                   |
| <b>Step 3h.</b> Calculate $\phi V_{cbg} = 3,112$ lbf x 0.7= 2,178 lbf                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | D.4.4 c)          | Table 3             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                   |                     |
| <b>Step 4.</b> Calculate Pryout: $\phi$ $V_{cpg} = k_{cp} \times \phi$ $N_{cbg} = 1 \times 0.7 \times 6.264 = 4.385$ lbf                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | D.6.3.1 b)        | Table 3             |
| $N_{cbg}$ According to Figure 4 – Tension ( $c_{a2} > 1.5 h_{ef}$ )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                   |                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                   |                     |
| <b>Step 5.</b> Controlling strength: $\phi V_n = \min \mathbf{I} \phi V_{cpg}$ , $\phi V_{cbg}$ , $\phi V_{sg} \mathbf{I} = 2,178$ lbf (static)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | D.4.1.2           | -                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | A C L 04 0        |                     |
| Step 6. Calculate allowable stress design (30% dead load, 70% live load)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ACI 318           | 84.2                |
| $\alpha = 1.2 \times 0.3 + 1.6 \times 0.7 = 1.48 \rightarrow V_{allowable, ASD} = 2,178 / 1.48 = 1,471 lbf$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Section<br>9.2    | §4.2                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ₹.∠               |                     |

FIGURE 6—EXAMPLE CALCULATION FOR SHEAR CAPACITY (IMPERIAL UNITS)

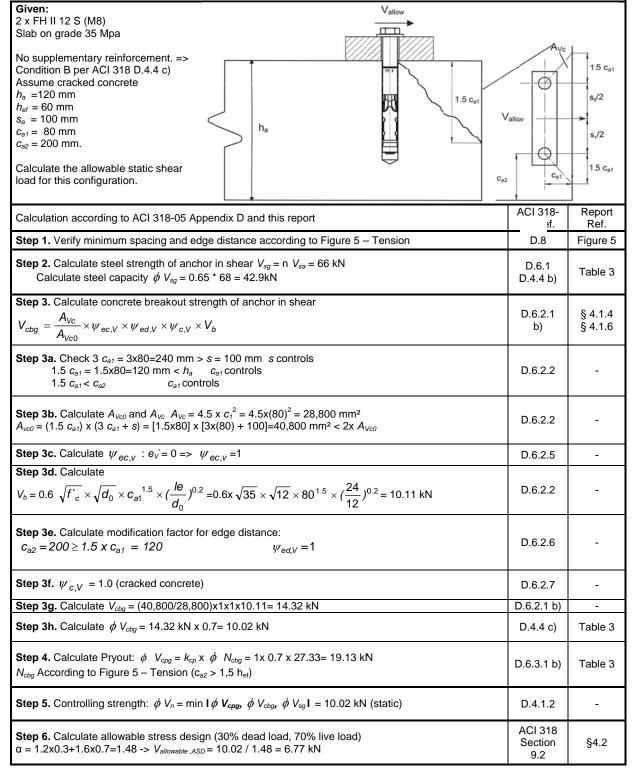



FIGURE 7—EXAMPLE CALCULATION SHEAR CAPACITY (SI UNITS)